自然视频中人体关节分割与姿态跟踪

Taegyu Lim, Seunghoon Hong, Bohyung Han, J. Han
{"title":"自然视频中人体关节分割与姿态跟踪","authors":"Taegyu Lim, Seunghoon Hong, Bohyung Han, J. Han","doi":"10.1109/ICCV.2013.108","DOIUrl":null,"url":null,"abstract":"We propose an on-line algorithm to extract a human by foreground/background segmentation and estimate pose of the human from the videos captured by moving cameras. We claim that a virtuous cycle can be created by appropriate interactions between the two modules to solve individual problems. This joint estimation problem is divided into two sub problems, foreground/background segmentation and pose tracking, which alternate iteratively for optimization, segmentation step generates foreground mask for human pose tracking, and human pose tracking step provides fore-ground response map for segmentation. The final solution is obtained when the iterative procedure converges. We evaluate our algorithm quantitatively and qualitatively in real videos involving various challenges, and present its outstanding performance compared to the state-of-the-art techniques for segmentation and pose estimation.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"833-840"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Joint Segmentation and Pose Tracking of Human in Natural Videos\",\"authors\":\"Taegyu Lim, Seunghoon Hong, Bohyung Han, J. Han\",\"doi\":\"10.1109/ICCV.2013.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an on-line algorithm to extract a human by foreground/background segmentation and estimate pose of the human from the videos captured by moving cameras. We claim that a virtuous cycle can be created by appropriate interactions between the two modules to solve individual problems. This joint estimation problem is divided into two sub problems, foreground/background segmentation and pose tracking, which alternate iteratively for optimization, segmentation step generates foreground mask for human pose tracking, and human pose tracking step provides fore-ground response map for segmentation. The final solution is obtained when the iterative procedure converges. We evaluate our algorithm quantitatively and qualitatively in real videos involving various challenges, and present its outstanding performance compared to the state-of-the-art techniques for segmentation and pose estimation.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"1 1\",\"pages\":\"833-840\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种通过前景/背景分割提取人的在线算法,并从移动摄像机拍摄的视频中估计人的姿态。我们认为,通过两个模块之间的适当互动,可以创造一个良性循环,以解决个别问题。该联合估计问题分为前景/背景分割和姿态跟踪两个子问题,迭代交替进行优化,分割步骤生成用于人体姿态跟踪的前景掩模,人体姿态跟踪步骤提供用于分割的前景响应图。当迭代过程收敛时得到最终解。我们在涉及各种挑战的真实视频中定量和定性地评估了我们的算法,并与最先进的分割和姿态估计技术相比,展示了其出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Segmentation and Pose Tracking of Human in Natural Videos
We propose an on-line algorithm to extract a human by foreground/background segmentation and estimate pose of the human from the videos captured by moving cameras. We claim that a virtuous cycle can be created by appropriate interactions between the two modules to solve individual problems. This joint estimation problem is divided into two sub problems, foreground/background segmentation and pose tracking, which alternate iteratively for optimization, segmentation step generates foreground mask for human pose tracking, and human pose tracking step provides fore-ground response map for segmentation. The final solution is obtained when the iterative procedure converges. We evaluate our algorithm quantitatively and qualitatively in real videos involving various challenges, and present its outstanding performance compared to the state-of-the-art techniques for segmentation and pose estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1