基于热图像和IV曲线的光伏板局部缺陷和热击穿检测、表征和建模

N. Azkona, A. Llaria, O. Curea, F. Recart
{"title":"基于热图像和IV曲线的光伏板局部缺陷和热击穿检测、表征和建模","authors":"N. Azkona, A. Llaria, O. Curea, F. Recart","doi":"10.3390/electronicmat3020014","DOIUrl":null,"url":null,"abstract":"In this work, a defective commercial module with a rounded IV characteristic is analyzed in detail to identify the sources of its malfunction. The analysis of the module includes thermography images taken under diverse conditions, the IV response of the module obtained without any shadow, and shadowing one cell at a time, as recommended by the IEC 61215 Standard. Additionally, a direct measurement of the IV characteristic and resistance of single cells in the panel has been conducted to verify the isolation between the p and n areas. In parallel, theoretical cell and module behaviors are presented. In this frame, simulations show how cell mismatch can be the explanation to the rounded IV output of the solar panel under study. From the thermal images of the module, several localized hot spots related to failing cells have been revealed. During the present study, thermal breakdown is seen before avalanche breakdown in one of the cells, evidencing a hot spot. Not many papers have dealt with this problem, whereas we believe it is important to analyze the relationship between thermal breakdown and hot spotting in order to prevent it in the future, since hot spots are the main defects related to degradation of modern modules.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection, Characterization and Modeling of Localized Defects and Thermal Breakdown in Photovoltaic Panels from Thermal Images and IV Curves\",\"authors\":\"N. Azkona, A. Llaria, O. Curea, F. Recart\",\"doi\":\"10.3390/electronicmat3020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a defective commercial module with a rounded IV characteristic is analyzed in detail to identify the sources of its malfunction. The analysis of the module includes thermography images taken under diverse conditions, the IV response of the module obtained without any shadow, and shadowing one cell at a time, as recommended by the IEC 61215 Standard. Additionally, a direct measurement of the IV characteristic and resistance of single cells in the panel has been conducted to verify the isolation between the p and n areas. In parallel, theoretical cell and module behaviors are presented. In this frame, simulations show how cell mismatch can be the explanation to the rounded IV output of the solar panel under study. From the thermal images of the module, several localized hot spots related to failing cells have been revealed. During the present study, thermal breakdown is seen before avalanche breakdown in one of the cells, evidencing a hot spot. Not many papers have dealt with this problem, whereas we believe it is important to analyze the relationship between thermal breakdown and hot spotting in order to prevent it in the future, since hot spots are the main defects related to degradation of modern modules.\",\"PeriodicalId\":18610,\"journal\":{\"name\":\"Modern Electronic Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronicmat3020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronicmat3020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,详细分析了具有圆形IV特性的有缺陷的商用模块,以确定其故障的来源。该模块的分析包括在不同条件下拍摄的热成像图像,模块在没有任何阴影的情况下获得的IV响应,以及根据IEC 61215标准的建议,一次对一个细胞进行阴影。此外,对面板中单个细胞的IV特性和电阻进行了直接测量,以验证p和n区域之间的隔离。同时,给出了单元和模块的理论行为。在这个框架中,模拟显示了电池不匹配如何解释所研究的太阳能电池板的四角输出。从模块的热图像中,揭示了与失效细胞相关的几个局部热点。在本研究中,其中一个细胞在雪崩击穿之前出现热击穿,证明存在热点。涉及这个问题的论文并不多,而我们认为分析热击穿和热斑之间的关系是很重要的,以防止将来发生热斑,因为热斑是现代模块退化的主要缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection, Characterization and Modeling of Localized Defects and Thermal Breakdown in Photovoltaic Panels from Thermal Images and IV Curves
In this work, a defective commercial module with a rounded IV characteristic is analyzed in detail to identify the sources of its malfunction. The analysis of the module includes thermography images taken under diverse conditions, the IV response of the module obtained without any shadow, and shadowing one cell at a time, as recommended by the IEC 61215 Standard. Additionally, a direct measurement of the IV characteristic and resistance of single cells in the panel has been conducted to verify the isolation between the p and n areas. In parallel, theoretical cell and module behaviors are presented. In this frame, simulations show how cell mismatch can be the explanation to the rounded IV output of the solar panel under study. From the thermal images of the module, several localized hot spots related to failing cells have been revealed. During the present study, thermal breakdown is seen before avalanche breakdown in one of the cells, evidencing a hot spot. Not many papers have dealt with this problem, whereas we believe it is important to analyze the relationship between thermal breakdown and hot spotting in order to prevent it in the future, since hot spots are the main defects related to degradation of modern modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Synaptic behavior of a composite multiferroic heterostructure FeBSiC – PZT at resonant excitation Optically transparent highly conductive contact based on ITO and copper metallization for solar cells Electrophysical properties, memristive and resistive switching of charged domain walls in lithium niobate Crystalline structure of 0.65BiFeO3–0.35Ba1-xSrxTiO3 solid solutions in the vicinity of the morphotropic phase boundary Synthesis and piezoelectric properties of freestanding ferroelectric films based on barium strontium titanate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1