利用图形处理单元加速从椭圆全向图像到全景图像的转换

Cheng-Hung Lin, Wen-Jui Chou
{"title":"利用图形处理单元加速从椭圆全向图像到全景图像的转换","authors":"Cheng-Hung Lin, Wen-Jui Chou","doi":"10.1109/ICCE-TW.2016.7520975","DOIUrl":null,"url":null,"abstract":"Omni-directional cameras are widely used in many applications such as surveillance systems and endoscopy. Omnidirectional cameras use a single camera and a reflective mirror to capture elliptic omnidirectional images and then transform the elliptic omnidirectional images to panoramic images. To accelerate the transformation from elliptic omnidirectional images to panoramic images, this paper proposes a hierarchical parallelism including data parallelism and task parallelism to improve the performance of transformation using graphic processing units. The data parallelism accelerates the mapping of pixels from elliptic omnidirectional images to panoramic images using multiple threads simultaneously while the task parallelism performs deep pipelines on multiple streams. We have implemented the proposed algorithm using CUDA on NVIDIA GPUs. The experimental results show that the proposed hierarchical parallelism performed on GPUs achieves 6.33 times faster than the CPU counterpart does.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"5 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceleration of the transformation from elliptic omnidirectional images to panoramic images using graphic processing units\",\"authors\":\"Cheng-Hung Lin, Wen-Jui Chou\",\"doi\":\"10.1109/ICCE-TW.2016.7520975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Omni-directional cameras are widely used in many applications such as surveillance systems and endoscopy. Omnidirectional cameras use a single camera and a reflective mirror to capture elliptic omnidirectional images and then transform the elliptic omnidirectional images to panoramic images. To accelerate the transformation from elliptic omnidirectional images to panoramic images, this paper proposes a hierarchical parallelism including data parallelism and task parallelism to improve the performance of transformation using graphic processing units. The data parallelism accelerates the mapping of pixels from elliptic omnidirectional images to panoramic images using multiple threads simultaneously while the task parallelism performs deep pipelines on multiple streams. We have implemented the proposed algorithm using CUDA on NVIDIA GPUs. The experimental results show that the proposed hierarchical parallelism performed on GPUs achieves 6.33 times faster than the CPU counterpart does.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"5 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全方位摄像机广泛应用于监控系统和内窥镜等领域。全向相机采用单镜头和反射镜捕捉椭圆型全向图像,然后将椭圆型全向图像转换为全景图像。为了加速椭圆型全向图像向全景图像的转换,本文提出了一种分层并行算法,包括数据并行和任务并行,以提高图形处理单元转换的性能。数据并行性利用多线程同时加速像素从椭圆全向图像到全景图像的映射,而任务并行性在多个流上执行深管道。我们已经在NVIDIA gpu上使用CUDA实现了所提出的算法。实验结果表明,在gpu上执行的分层并行性比在CPU上执行的分层并行性快6.33倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acceleration of the transformation from elliptic omnidirectional images to panoramic images using graphic processing units
Omni-directional cameras are widely used in many applications such as surveillance systems and endoscopy. Omnidirectional cameras use a single camera and a reflective mirror to capture elliptic omnidirectional images and then transform the elliptic omnidirectional images to panoramic images. To accelerate the transformation from elliptic omnidirectional images to panoramic images, this paper proposes a hierarchical parallelism including data parallelism and task parallelism to improve the performance of transformation using graphic processing units. The data parallelism accelerates the mapping of pixels from elliptic omnidirectional images to panoramic images using multiple threads simultaneously while the task parallelism performs deep pipelines on multiple streams. We have implemented the proposed algorithm using CUDA on NVIDIA GPUs. The experimental results show that the proposed hierarchical parallelism performed on GPUs achieves 6.33 times faster than the CPU counterpart does.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microorganism Image Counting Based on Multi-threshold Optimization An immersive VR experience mode design Methods and apparatuses for drying electronic devices Topology constructing and restructuring mechanisms for Bluetooth radio networks Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1