A. Kustas, J. Pegues, M. Melia, S. Whetten, Morgan R. Jones, N. Argibay
{"title":"激光增材制造耐火合金的表征","authors":"A. Kustas, J. Pegues, M. Melia, S. Whetten, Morgan R. Jones, N. Argibay","doi":"10.1155/2022/1928643","DOIUrl":null,"url":null,"abstract":"Refractory alloys often possess superior thermomechanical properties compared to conventional materials, such as steels, Ni-based superalloys, and Ti alloys, especially in high-temperature environments. While these materials promise to revolutionize numerous industries, significant hurdles remain for insertion into applications due to an incomplete understanding of structure-property relationships and conventional processing challenges. We explore laser-based additive manufacturing (AM) to construct refractory alloys consisting of combinations of Mo, Nb, Ta, and Ti with systematically increasing compositional complexity. Microstructure, composition, and hardness of the AM-processed alloys were characterized. Results are discussed in the context of pairing additive manufacturing with refractory metals to enable next-generation alloys.","PeriodicalId":18220,"journal":{"name":"Material Design & Processing Communications","volume":"69 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Refractory Alloys Produced by Laser Additive Manufacturing\",\"authors\":\"A. Kustas, J. Pegues, M. Melia, S. Whetten, Morgan R. Jones, N. Argibay\",\"doi\":\"10.1155/2022/1928643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Refractory alloys often possess superior thermomechanical properties compared to conventional materials, such as steels, Ni-based superalloys, and Ti alloys, especially in high-temperature environments. While these materials promise to revolutionize numerous industries, significant hurdles remain for insertion into applications due to an incomplete understanding of structure-property relationships and conventional processing challenges. We explore laser-based additive manufacturing (AM) to construct refractory alloys consisting of combinations of Mo, Nb, Ta, and Ti with systematically increasing compositional complexity. Microstructure, composition, and hardness of the AM-processed alloys were characterized. Results are discussed in the context of pairing additive manufacturing with refractory metals to enable next-generation alloys.\",\"PeriodicalId\":18220,\"journal\":{\"name\":\"Material Design & Processing Communications\",\"volume\":\"69 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Design & Processing Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1928643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1928643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Refractory Alloys Produced by Laser Additive Manufacturing
Refractory alloys often possess superior thermomechanical properties compared to conventional materials, such as steels, Ni-based superalloys, and Ti alloys, especially in high-temperature environments. While these materials promise to revolutionize numerous industries, significant hurdles remain for insertion into applications due to an incomplete understanding of structure-property relationships and conventional processing challenges. We explore laser-based additive manufacturing (AM) to construct refractory alloys consisting of combinations of Mo, Nb, Ta, and Ti with systematically increasing compositional complexity. Microstructure, composition, and hardness of the AM-processed alloys were characterized. Results are discussed in the context of pairing additive manufacturing with refractory metals to enable next-generation alloys.