文本到因果知识图:将非结构化商业文本中的知识合成为因果图的框架

Inf. Comput. Pub Date : 2023-06-28 DOI:10.3390/info14070367
Seethalakshmi Gopalakrishnan, Victor Zitian Chen, Wenwen Dou, Gus Hahn-Powell, Sreekar Nedunuri, Wlodek Zadrozny
{"title":"文本到因果知识图:将非结构化商业文本中的知识合成为因果图的框架","authors":"Seethalakshmi Gopalakrishnan, Victor Zitian Chen, Wenwen Dou, Gus Hahn-Powell, Sreekar Nedunuri, Wlodek Zadrozny","doi":"10.3390/info14070367","DOIUrl":null,"url":null,"abstract":"This article presents a state-of-the-art system to extract and synthesize causal statements from company reports into a directed causal graph. The extracted information is organized by its relevance to different stakeholder group benefits (customers, employees, investors, and the community/environment). The presented method of synthesizing extracted data into a knowledge graph comprises a framework that can be used for similar tasks in other domains, e.g., medical information. The current work addresses the problem of finding, organizing, and synthesizing a view of the cause-and-effect relationships based on textual data in order to inform and even prescribe the best actions that may affect target business outcomes related to the benefits for different stakeholders (customers, employees, investors, and the community/environment).","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":"101 1","pages":"367"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text to Causal Knowledge Graph: A Framework to Synthesize Knowledge from Unstructured Business Texts into Causal Graphs\",\"authors\":\"Seethalakshmi Gopalakrishnan, Victor Zitian Chen, Wenwen Dou, Gus Hahn-Powell, Sreekar Nedunuri, Wlodek Zadrozny\",\"doi\":\"10.3390/info14070367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a state-of-the-art system to extract and synthesize causal statements from company reports into a directed causal graph. The extracted information is organized by its relevance to different stakeholder group benefits (customers, employees, investors, and the community/environment). The presented method of synthesizing extracted data into a knowledge graph comprises a framework that can be used for similar tasks in other domains, e.g., medical information. The current work addresses the problem of finding, organizing, and synthesizing a view of the cause-and-effect relationships based on textual data in order to inform and even prescribe the best actions that may affect target business outcomes related to the benefits for different stakeholders (customers, employees, investors, and the community/environment).\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":\"101 1\",\"pages\":\"367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种最先进的系统,从公司报告中提取和综合因果陈述,形成有向因果图。提取的信息按照与不同涉众群体利益(客户、员工、投资者和社区/环境)的相关性进行组织。所提出的将提取的数据合成为知识图的方法包括一个框架,该框架可用于其他领域(例如,医疗信息)中的类似任务。当前的工作解决了查找、组织和综合基于文本数据的因果关系视图的问题,以便告知甚至规定可能影响与不同利益相关者(客户、员工、投资者和社区/环境)利益相关的目标业务结果的最佳操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text to Causal Knowledge Graph: A Framework to Synthesize Knowledge from Unstructured Business Texts into Causal Graphs
This article presents a state-of-the-art system to extract and synthesize causal statements from company reports into a directed causal graph. The extracted information is organized by its relevance to different stakeholder group benefits (customers, employees, investors, and the community/environment). The presented method of synthesizing extracted data into a knowledge graph comprises a framework that can be used for similar tasks in other domains, e.g., medical information. The current work addresses the problem of finding, organizing, and synthesizing a view of the cause-and-effect relationships based on textual data in order to inform and even prescribe the best actions that may affect target business outcomes related to the benefits for different stakeholders (customers, employees, investors, and the community/environment).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1