对证据和信念进行推理的逻辑

T. Fan, C. Liau
{"title":"对证据和信念进行推理的逻辑","authors":"T. Fan, C. Liau","doi":"10.1145/3106426.3106519","DOIUrl":null,"url":null,"abstract":"In agent-based systems, an agent generally forms her belief based on evidence from multiple sources, such as messages from other agents or perception of the external environment. In this paper, we present a logic for reasoning about evidence and belief. Our framework not only takes advantage of the source-tracking capability of justification logic, but also allows the distinction between the actual observation and simply potential admissibility of evidence. We present the axiomatization for the basic logic and its dynamic extension, investigate its properties, and use a running example to show its applicability to information fusion for autonomous agents.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A logic for reasoning about evidence and belief\",\"authors\":\"T. Fan, C. Liau\",\"doi\":\"10.1145/3106426.3106519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In agent-based systems, an agent generally forms her belief based on evidence from multiple sources, such as messages from other agents or perception of the external environment. In this paper, we present a logic for reasoning about evidence and belief. Our framework not only takes advantage of the source-tracking capability of justification logic, but also allows the distinction between the actual observation and simply potential admissibility of evidence. We present the axiomatization for the basic logic and its dynamic extension, investigate its properties, and use a running example to show its applicability to information fusion for autonomous agents.\",\"PeriodicalId\":20685,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106426.3106519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基于智能体的系统中,智能体通常根据来自多个来源的证据形成她的信念,例如来自其他智能体的信息或对外部环境的感知。在本文中,我们提出了一个关于证据和信念的推理逻辑。我们的框架不仅利用了证明逻辑的溯源能力,而且还允许区分实际观察和简单的潜在证据可采性。给出了基本逻辑的公理化及其动态扩展,研究了基本逻辑的性质,并用实例说明了其在自主智能体信息融合中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A logic for reasoning about evidence and belief
In agent-based systems, an agent generally forms her belief based on evidence from multiple sources, such as messages from other agents or perception of the external environment. In this paper, we present a logic for reasoning about evidence and belief. Our framework not only takes advantage of the source-tracking capability of justification logic, but also allows the distinction between the actual observation and simply potential admissibility of evidence. We present the axiomatization for the basic logic and its dynamic extension, investigate its properties, and use a running example to show its applicability to information fusion for autonomous agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1