基于无线传感器网络的环境监测传感器优化配置策略

C. Castello, Jeffrey Fan, A. Davari, Ruei-Xi Chen
{"title":"基于无线传感器网络的环境监测传感器优化配置策略","authors":"C. Castello, Jeffrey Fan, A. Davari, Ruei-Xi Chen","doi":"10.1109/SSST.2010.5442825","DOIUrl":null,"url":null,"abstract":"This paper presents a novel strategy in determining an optimal sensor placement scheme for environmental monitoring using Wireless Sensor Networks (WSN). This is accomplished by minimizing the variance of spatial analysis based on randomly chosen points representing the sensor locations. These points are assigned randomly generated measurements based on a specified distribution. Spatial analysis is employed using Geostatistical Analysis (classical variography and ordinary point kriging) and optimization occurs with Monte Carlo Analysis. A simple example of measuring mercury in soil is illustrated in finding the optimal sensor placement using WSNs. Studied variables include the number of sensor locations, variances, and Monte Carlo repetitions.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"82 1","pages":"275-279"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Optimal sensor placement strategy for environmental monitoring using Wireless Sensor Networks\",\"authors\":\"C. Castello, Jeffrey Fan, A. Davari, Ruei-Xi Chen\",\"doi\":\"10.1109/SSST.2010.5442825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel strategy in determining an optimal sensor placement scheme for environmental monitoring using Wireless Sensor Networks (WSN). This is accomplished by minimizing the variance of spatial analysis based on randomly chosen points representing the sensor locations. These points are assigned randomly generated measurements based on a specified distribution. Spatial analysis is employed using Geostatistical Analysis (classical variography and ordinary point kriging) and optimization occurs with Monte Carlo Analysis. A simple example of measuring mercury in soil is illustrated in finding the optimal sensor placement using WSNs. Studied variables include the number of sensor locations, variances, and Monte Carlo repetitions.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"82 1\",\"pages\":\"275-279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本文提出了一种利用无线传感器网络(WSN)确定环境监测中传感器最优放置方案的新策略。这是通过最小化基于代表传感器位置的随机选择点的空间分析方差来实现的。这些点是根据特定分布随机生成的测量值分配的。空间分析采用地统计分析(经典变差法和普通点克里格法),优化采用蒙特卡罗分析。通过一个简单的测量土壤中汞的例子,说明了如何利用无线传感器网络找到最佳的传感器位置。研究的变量包括传感器位置的数量、方差和蒙特卡罗重复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal sensor placement strategy for environmental monitoring using Wireless Sensor Networks
This paper presents a novel strategy in determining an optimal sensor placement scheme for environmental monitoring using Wireless Sensor Networks (WSN). This is accomplished by minimizing the variance of spatial analysis based on randomly chosen points representing the sensor locations. These points are assigned randomly generated measurements based on a specified distribution. Spatial analysis is employed using Geostatistical Analysis (classical variography and ordinary point kriging) and optimization occurs with Monte Carlo Analysis. A simple example of measuring mercury in soil is illustrated in finding the optimal sensor placement using WSNs. Studied variables include the number of sensor locations, variances, and Monte Carlo repetitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision-based lane detection for an autonomous ground vehicle: A comparative field test A new TDOA/FDOA-based recursive geolocation algorithm Implementation of headway compensation on autonomous vehicle convoys with command shaping A practical solution to the numerical butterfly effect in chaotic systems for fast but memory limited computers Analysis of induced surface currents on high velocity target using a relativistic approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1