T. Wagner, Marcus Pauritsch, C. Mayaud, A. Kellerer‐Pirklbauer, Felix Thalheim, G. Winkler
{"title":"邻近两个残岩冰川(Niedere Tauern Range, Austria)块状表层小气候的控制因素","authors":"T. Wagner, Marcus Pauritsch, C. Mayaud, A. Kellerer‐Pirklbauer, Felix Thalheim, G. Winkler","doi":"10.1080/04353676.2019.1670950","DOIUrl":null,"url":null,"abstract":"ABSTRACT Coarse blocky material is known to have a ground cooling effect compared to other types of unconsolidated surface material, which may have an influence on spatial distribution and conservation of permafrost. In the light of climate warming, this effect may retard permafrost degradation or exert prolonged ground cooling in general. To contribute to a better understanding of this ground cooling effect and potential influencing factors, the thermal regime of blocky surface layers of two comparable nearby relict rock glaciers with opposing aspects was investigated. Air, surface and shallow ground temperature at 1 m depth were continuously measured over a four-year period at nine locations distributed over two rock glaciers. The blocky surface layer of the SW-exposed rock glacier exhibits lower and more heterogeneous temperatures than the NE-oriented despite a higher potential solar radiation. The data suggest a thinner or more discontinuous seasonal snow cover at the SW-exposed rock glacier, causing a more efficient winter cooling. The importance of air flow driven heat transfer as a source of cooling is supported by the data. Results illustrate thermal heterogeneities within blocky layers and the importance of the seasonal snow cover pattern in addition to topography and microclimatic variability in high relief terrain is hypothesized.","PeriodicalId":55112,"journal":{"name":"Geografiska Annaler Series A-Physical Geography","volume":"1 1","pages":"310 - 333"},"PeriodicalIF":1.4000,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria)\",\"authors\":\"T. Wagner, Marcus Pauritsch, C. Mayaud, A. Kellerer‐Pirklbauer, Felix Thalheim, G. Winkler\",\"doi\":\"10.1080/04353676.2019.1670950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Coarse blocky material is known to have a ground cooling effect compared to other types of unconsolidated surface material, which may have an influence on spatial distribution and conservation of permafrost. In the light of climate warming, this effect may retard permafrost degradation or exert prolonged ground cooling in general. To contribute to a better understanding of this ground cooling effect and potential influencing factors, the thermal regime of blocky surface layers of two comparable nearby relict rock glaciers with opposing aspects was investigated. Air, surface and shallow ground temperature at 1 m depth were continuously measured over a four-year period at nine locations distributed over two rock glaciers. The blocky surface layer of the SW-exposed rock glacier exhibits lower and more heterogeneous temperatures than the NE-oriented despite a higher potential solar radiation. The data suggest a thinner or more discontinuous seasonal snow cover at the SW-exposed rock glacier, causing a more efficient winter cooling. The importance of air flow driven heat transfer as a source of cooling is supported by the data. Results illustrate thermal heterogeneities within blocky layers and the importance of the seasonal snow cover pattern in addition to topography and microclimatic variability in high relief terrain is hypothesized.\",\"PeriodicalId\":55112,\"journal\":{\"name\":\"Geografiska Annaler Series A-Physical Geography\",\"volume\":\"1 1\",\"pages\":\"310 - 333\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geografiska Annaler Series A-Physical Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/04353676.2019.1670950\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografiska Annaler Series A-Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/04353676.2019.1670950","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria)
ABSTRACT Coarse blocky material is known to have a ground cooling effect compared to other types of unconsolidated surface material, which may have an influence on spatial distribution and conservation of permafrost. In the light of climate warming, this effect may retard permafrost degradation or exert prolonged ground cooling in general. To contribute to a better understanding of this ground cooling effect and potential influencing factors, the thermal regime of blocky surface layers of two comparable nearby relict rock glaciers with opposing aspects was investigated. Air, surface and shallow ground temperature at 1 m depth were continuously measured over a four-year period at nine locations distributed over two rock glaciers. The blocky surface layer of the SW-exposed rock glacier exhibits lower and more heterogeneous temperatures than the NE-oriented despite a higher potential solar radiation. The data suggest a thinner or more discontinuous seasonal snow cover at the SW-exposed rock glacier, causing a more efficient winter cooling. The importance of air flow driven heat transfer as a source of cooling is supported by the data. Results illustrate thermal heterogeneities within blocky layers and the importance of the seasonal snow cover pattern in addition to topography and microclimatic variability in high relief terrain is hypothesized.
期刊介绍:
Geografiska Annaler: Series A, Physical Geography publishes original research in the field of Physical Geography with special emphasis on cold regions/high latitude, high altitude processes, landforms and environmental change, past, present and future.
The journal primarily promotes dissemination of regular research by publishing research-based articles. The journal also publishes thematic issues where collections of articles around a specific themes are gathered. Such themes are determined by the Editors upon request. Finally the journal wishes to promote knowledge and understanding of topics in Physical Geography, their origin, development and current standing through invited review articles.