针对实时系统的 DVFS 动态松弛共享学习技术

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2023-06-08 DOI:10.1109/TSUSC.2023.3283518
Mir Ashraf Uddin;Man Lin;Laurence T. Yang
{"title":"针对实时系统的 DVFS 动态松弛共享学习技术","authors":"Mir Ashraf Uddin;Man Lin;Laurence T. Yang","doi":"10.1109/TSUSC.2023.3283518","DOIUrl":null,"url":null,"abstract":"This work aims at addressing carbon neutrality challenges through resource management with system software control. Reducing energy costs is vital for modern systems, especially those battery-powered devices that need to perform complex tasks. The technique of dynamic voltage or frequency scaling (DVFS) has been commonly adopted for reducing power consumption in cyber-physical systems to support the increasing computation demand under limited battery life. Dynamic slack becomes available when a task finishes earlier than its worst execution time. Dynamic slack management is an important factor for the DVFS mechanism. This paper proposes a dynamic slack-sharing (DSS) DVFS scheduling method that reduces CPU energy consumption by learning the slack-sharing rate. The DSS method automatically changes the slack sharing rate of a task on the fly in different situations through learning from experience to determine how much slack to use for the next task and how much to share. The method used for learning is Q-learning. Extensive experiments have been performed, and the results show that the DSS technique achieves more energy savings than the existing ones.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"261-270"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Slack-Sharing Learning Technique With DVFS for Real-Time Systems\",\"authors\":\"Mir Ashraf Uddin;Man Lin;Laurence T. Yang\",\"doi\":\"10.1109/TSUSC.2023.3283518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims at addressing carbon neutrality challenges through resource management with system software control. Reducing energy costs is vital for modern systems, especially those battery-powered devices that need to perform complex tasks. The technique of dynamic voltage or frequency scaling (DVFS) has been commonly adopted for reducing power consumption in cyber-physical systems to support the increasing computation demand under limited battery life. Dynamic slack becomes available when a task finishes earlier than its worst execution time. Dynamic slack management is an important factor for the DVFS mechanism. This paper proposes a dynamic slack-sharing (DSS) DVFS scheduling method that reduces CPU energy consumption by learning the slack-sharing rate. The DSS method automatically changes the slack sharing rate of a task on the fly in different situations through learning from experience to determine how much slack to use for the next task and how much to share. The method used for learning is Q-learning. Extensive experiments have been performed, and the results show that the DSS technique achieves more energy savings than the existing ones.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 3\",\"pages\":\"261-270\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10146240/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10146240/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在通过系统软件控制进行资源管理,应对碳中和挑战。降低能源成本对现代系统至关重要,尤其是那些需要执行复杂任务的电池供电设备。动态电压或频率缩放(DVFS)技术已被普遍用于降低网络物理系统的功耗,以支持在电池寿命有限的情况下不断增长的计算需求。当任务比其最坏执行时间提前完成时,就会出现动态松弛。动态松弛管理是 DVFS 机制的一个重要因素。本文提出了一种动态空闲共享(DSS)DVFS 调度方法,通过学习空闲共享率来降低 CPU 能耗。DSS 方法通过学习经验,在不同情况下自动改变任务的松弛共享率,以确定下一个任务使用多少松弛以及共享多少松弛。学习的方法是 Q-learning。我们进行了广泛的实验,结果表明 DSS 技术比现有技术节省了更多能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Slack-Sharing Learning Technique With DVFS for Real-Time Systems
This work aims at addressing carbon neutrality challenges through resource management with system software control. Reducing energy costs is vital for modern systems, especially those battery-powered devices that need to perform complex tasks. The technique of dynamic voltage or frequency scaling (DVFS) has been commonly adopted for reducing power consumption in cyber-physical systems to support the increasing computation demand under limited battery life. Dynamic slack becomes available when a task finishes earlier than its worst execution time. Dynamic slack management is an important factor for the DVFS mechanism. This paper proposes a dynamic slack-sharing (DSS) DVFS scheduling method that reduces CPU energy consumption by learning the slack-sharing rate. The DSS method automatically changes the slack sharing rate of a task on the fly in different situations through learning from experience to determine how much slack to use for the next task and how much to share. The method used for learning is Q-learning. Extensive experiments have been performed, and the results show that the DSS technique achieves more energy savings than the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1