G. Choudary, P. Prameela, M. C. Varma, A. M. Kumar, K. Rao
{"title":"对Co/Cu取代Ni-Zn铁氧体分析的贡献","authors":"G. Choudary, P. Prameela, M. C. Varma, A. M. Kumar, K. Rao","doi":"10.1155/2013/350707","DOIUrl":null,"url":null,"abstract":"In this communication, Co/Cu substituted Ni-Zn ferrites processed through sol-gel synthesis using polyethylene glycol (PEG) as a chelating agent are studied, intending to aid in understanding and choosing the optimum ferrite material for high frequency applications. Lattice constant and average crystallite size have been estimated from FWHM of the X-ray diffraction peaks, and these parameters are understood by considering the ionic radii of the substituted as well as the replacing ions. Observed variations in saturation magnetization and initial permeability for these ferrites have been explained on the basis of anisotropy contribution for cobalt and segregation of copper at grain boundaries evident from scanning electron micrographs.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Contribution to Analysis of Co/Cu Substituted Ni-Zn Ferrites\",\"authors\":\"G. Choudary, P. Prameela, M. C. Varma, A. M. Kumar, K. Rao\",\"doi\":\"10.1155/2013/350707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this communication, Co/Cu substituted Ni-Zn ferrites processed through sol-gel synthesis using polyethylene glycol (PEG) as a chelating agent are studied, intending to aid in understanding and choosing the optimum ferrite material for high frequency applications. Lattice constant and average crystallite size have been estimated from FWHM of the X-ray diffraction peaks, and these parameters are understood by considering the ionic radii of the substituted as well as the replacing ions. Observed variations in saturation magnetization and initial permeability for these ferrites have been explained on the basis of anisotropy contribution for cobalt and segregation of copper at grain boundaries evident from scanning electron micrographs.\",\"PeriodicalId\":13278,\"journal\":{\"name\":\"Indian Journal of Materials Science\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/350707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/350707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contribution to Analysis of Co/Cu Substituted Ni-Zn Ferrites
In this communication, Co/Cu substituted Ni-Zn ferrites processed through sol-gel synthesis using polyethylene glycol (PEG) as a chelating agent are studied, intending to aid in understanding and choosing the optimum ferrite material for high frequency applications. Lattice constant and average crystallite size have been estimated from FWHM of the X-ray diffraction peaks, and these parameters are understood by considering the ionic radii of the substituted as well as the replacing ions. Observed variations in saturation magnetization and initial permeability for these ferrites have been explained on the basis of anisotropy contribution for cobalt and segregation of copper at grain boundaries evident from scanning electron micrographs.