Junjie Chen, Y. Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Bing Xie
{"title":"学习优先考虑编译器测试的测试程序","authors":"Junjie Chen, Y. Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Bing Xie","doi":"10.1109/ICSE.2017.70","DOIUrl":null,"url":null,"abstract":"Compiler testing is a crucial way of guaranteeing the reliability of compilers (and software systems in general). Many techniques have been proposed to facilitate automated compiler testing. These techniques rely on a large number of test programs (which are test inputs of compilers) generated by some test-generation tools (e.g., CSmith). However, these compiler testing techniques have serious efficiency problems as they usually take a long period of time to find compiler bugs. To accelerate compiler testing, it is desirable to prioritize the generated test programs so that the test programs that are more likely to trigger compiler bugs are executed earlier. In this paper, we propose the idea of learning to test, which learns the characteristics of bug-revealing test programs from previous test programs that triggered bugs. Based on the idea of learning to test, we propose LET, an approach to prioritizing test programs for compiler testing acceleration. LET consists of a learning process and a scheduling process. In the learning process, LET identifies a set of features of test programs, trains a capability model to predict the probability of a new test program for triggering compiler bugs and a time model to predict the execution time of a test program. In the scheduling process, LET prioritizes new test programs according to their bug-revealing probabilities in unit time, which is calculated based on the two trained models. Our extensive experiments show that LET significantly accelerates compiler testing. In particular, LET reduces more than 50% of the testing time in 24.64% of the cases, and reduces between 25% and 50% of the testing time in 36.23% of the cases.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"1 1","pages":"700-711"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Learning to Prioritize Test Programs for Compiler Testing\",\"authors\":\"Junjie Chen, Y. Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Bing Xie\",\"doi\":\"10.1109/ICSE.2017.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compiler testing is a crucial way of guaranteeing the reliability of compilers (and software systems in general). Many techniques have been proposed to facilitate automated compiler testing. These techniques rely on a large number of test programs (which are test inputs of compilers) generated by some test-generation tools (e.g., CSmith). However, these compiler testing techniques have serious efficiency problems as they usually take a long period of time to find compiler bugs. To accelerate compiler testing, it is desirable to prioritize the generated test programs so that the test programs that are more likely to trigger compiler bugs are executed earlier. In this paper, we propose the idea of learning to test, which learns the characteristics of bug-revealing test programs from previous test programs that triggered bugs. Based on the idea of learning to test, we propose LET, an approach to prioritizing test programs for compiler testing acceleration. LET consists of a learning process and a scheduling process. In the learning process, LET identifies a set of features of test programs, trains a capability model to predict the probability of a new test program for triggering compiler bugs and a time model to predict the execution time of a test program. In the scheduling process, LET prioritizes new test programs according to their bug-revealing probabilities in unit time, which is calculated based on the two trained models. Our extensive experiments show that LET significantly accelerates compiler testing. In particular, LET reduces more than 50% of the testing time in 24.64% of the cases, and reduces between 25% and 50% of the testing time in 36.23% of the cases.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"1 1\",\"pages\":\"700-711\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to Prioritize Test Programs for Compiler Testing
Compiler testing is a crucial way of guaranteeing the reliability of compilers (and software systems in general). Many techniques have been proposed to facilitate automated compiler testing. These techniques rely on a large number of test programs (which are test inputs of compilers) generated by some test-generation tools (e.g., CSmith). However, these compiler testing techniques have serious efficiency problems as they usually take a long period of time to find compiler bugs. To accelerate compiler testing, it is desirable to prioritize the generated test programs so that the test programs that are more likely to trigger compiler bugs are executed earlier. In this paper, we propose the idea of learning to test, which learns the characteristics of bug-revealing test programs from previous test programs that triggered bugs. Based on the idea of learning to test, we propose LET, an approach to prioritizing test programs for compiler testing acceleration. LET consists of a learning process and a scheduling process. In the learning process, LET identifies a set of features of test programs, trains a capability model to predict the probability of a new test program for triggering compiler bugs and a time model to predict the execution time of a test program. In the scheduling process, LET prioritizes new test programs according to their bug-revealing probabilities in unit time, which is calculated based on the two trained models. Our extensive experiments show that LET significantly accelerates compiler testing. In particular, LET reduces more than 50% of the testing time in 24.64% of the cases, and reduces between 25% and 50% of the testing time in 36.23% of the cases.