二元地统计资料的指数协方差函数比较

Angélica Maria Tortola Ribeiro, Paulo Ribeiro Lins Júnior, W. H. Bonat
{"title":"二元地统计资料的指数协方差函数比较","authors":"Angélica Maria Tortola Ribeiro, Paulo Ribeiro Lins Júnior, W. H. Bonat","doi":"10.28951/RBB.V39I1.558","DOIUrl":null,"url":null,"abstract":"In the analysis of multivariate spatial random elds, it is essential to dene a covariance structure that adequately models the relationship between the variables under study. We propose a covariance structure with exponential correlation function for bivariate random elds, the SEC model. We compare the SEC model fits with the bivariate separable exponential model and the bivariate exponential model with constraints, which are particular cases of the full bivariate Matern model, presented in the literature. A simulation study assess characteristics of the proposed model. The model is tted to a weather data set from Brazil, bearing in mind the importance of analyzing climate data to predict adverse environmental conditions. Predictive measures are used to compare the models under study. The satisfactory results compared to the models considered and the simpler structure makes the SEC model an alternative for the analysis of bivariate spatial elds.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"67 1","pages":"89-102"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"COMPARISON OF EXPONENTIAL COVARIANCE FUNCTIONS FOR BIVARIATE GEOSTATISTICAL DATA\",\"authors\":\"Angélica Maria Tortola Ribeiro, Paulo Ribeiro Lins Júnior, W. H. Bonat\",\"doi\":\"10.28951/RBB.V39I1.558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of multivariate spatial random elds, it is essential to dene a covariance structure that adequately models the relationship between the variables under study. We propose a covariance structure with exponential correlation function for bivariate random elds, the SEC model. We compare the SEC model fits with the bivariate separable exponential model and the bivariate exponential model with constraints, which are particular cases of the full bivariate Matern model, presented in the literature. A simulation study assess characteristics of the proposed model. The model is tted to a weather data set from Brazil, bearing in mind the importance of analyzing climate data to predict adverse environmental conditions. Predictive measures are used to compare the models under study. The satisfactory results compared to the models considered and the simpler structure makes the SEC model an alternative for the analysis of bivariate spatial elds.\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"67 1\",\"pages\":\"89-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/RBB.V39I1.558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V39I1.558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

在多变量空间随机域的分析中,必须确定一个协方差结构,以充分地模拟所研究变量之间的关系。我们提出了一个具有指数相关函数的双变量随机域协方差结构,即SEC模型。我们比较了SEC模型与二元可分离指数模型和带约束的二元指数模型的拟合,这是文献中完全二元Matern模型的特殊情况。仿真研究评估了所提出模型的特性。考虑到分析气候数据对预测不利环境条件的重要性,该模型以巴西的一组天气数据为基础。预测措施用于比较所研究的模型。与考虑的模型相比,令人满意的结果和更简单的结构使SEC模型成为二元空间域分析的替代选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPARISON OF EXPONENTIAL COVARIANCE FUNCTIONS FOR BIVARIATE GEOSTATISTICAL DATA
In the analysis of multivariate spatial random elds, it is essential to dene a covariance structure that adequately models the relationship between the variables under study. We propose a covariance structure with exponential correlation function for bivariate random elds, the SEC model. We compare the SEC model fits with the bivariate separable exponential model and the bivariate exponential model with constraints, which are particular cases of the full bivariate Matern model, presented in the literature. A simulation study assess characteristics of the proposed model. The model is tted to a weather data set from Brazil, bearing in mind the importance of analyzing climate data to predict adverse environmental conditions. Predictive measures are used to compare the models under study. The satisfactory results compared to the models considered and the simpler structure makes the SEC model an alternative for the analysis of bivariate spatial elds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1