{"title":"点击后行为增强推荐系统","authors":"Zhenhua Liang, Siqi Huang, Xueqing Huang, Rui Cao, Weize. Yu","doi":"10.1109/IRI49571.2020.00026","DOIUrl":null,"url":null,"abstract":"To predict users’ interests, the traditional recommendation system (RS) relies on exploring the explicit user-item ratings and macro implicit feedbacks (e.g., whether or not a user clicks the item). In this work, fine-grained post-click behaviors (e.g., mouse behaviors, keyboard events, and page scrolling events) are integrated to alleviate the data sparsity problem of explicit feedback and the data accuracy problem of macro implicit feedback. In the deployed article recommendation pipeline, a variety of post-click behaviors are combined to create a reading pattern model. The reading patterns are leveraged by the recommendation system to estimate users’ preference levels. As compared with existing click-based (macro implicit feedback) and dwell time-based (single micro implicit feedback) recommendation systems, the test performance of our designed reading pattern-based RS has been significantly improved in terms of rating prediction and ranking.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Post-Click Behaviors Enhanced Recommendation System\",\"authors\":\"Zhenhua Liang, Siqi Huang, Xueqing Huang, Rui Cao, Weize. Yu\",\"doi\":\"10.1109/IRI49571.2020.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To predict users’ interests, the traditional recommendation system (RS) relies on exploring the explicit user-item ratings and macro implicit feedbacks (e.g., whether or not a user clicks the item). In this work, fine-grained post-click behaviors (e.g., mouse behaviors, keyboard events, and page scrolling events) are integrated to alleviate the data sparsity problem of explicit feedback and the data accuracy problem of macro implicit feedback. In the deployed article recommendation pipeline, a variety of post-click behaviors are combined to create a reading pattern model. The reading patterns are leveraged by the recommendation system to estimate users’ preference levels. As compared with existing click-based (macro implicit feedback) and dwell time-based (single micro implicit feedback) recommendation systems, the test performance of our designed reading pattern-based RS has been significantly improved in terms of rating prediction and ranking.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了预测用户的兴趣,传统的推荐系统(RS)依赖于探索显式的用户-物品评级和宏观的隐式反馈(例如,用户是否点击了该物品)。在这项工作中,细粒度的点击后行为(如鼠标行为、键盘事件和页面滚动事件)被集成,以缓解显式反馈的数据稀疏性问题和宏观隐式反馈的数据准确性问题。在部署的文章推荐管道中,各种点击后行为被组合起来创建一个阅读模式模型。推荐系统利用阅读模式来估计用户的偏好水平。与现有的基于点击(宏观隐式反馈)和基于停留时间(单个微隐式反馈)的推荐系统相比,我们设计的基于阅读模式的推荐系统在评分预测和排名方面的测试性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Post-Click Behaviors Enhanced Recommendation System
To predict users’ interests, the traditional recommendation system (RS) relies on exploring the explicit user-item ratings and macro implicit feedbacks (e.g., whether or not a user clicks the item). In this work, fine-grained post-click behaviors (e.g., mouse behaviors, keyboard events, and page scrolling events) are integrated to alleviate the data sparsity problem of explicit feedback and the data accuracy problem of macro implicit feedback. In the deployed article recommendation pipeline, a variety of post-click behaviors are combined to create a reading pattern model. The reading patterns are leveraged by the recommendation system to estimate users’ preference levels. As compared with existing click-based (macro implicit feedback) and dwell time-based (single micro implicit feedback) recommendation systems, the test performance of our designed reading pattern-based RS has been significantly improved in terms of rating prediction and ranking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1