{"title":"在SSLNG过程中桥接压缩机和膨胀器技术","authors":"Michael Drewes, Tushar Patel","doi":"10.2118/197260-ms","DOIUrl":null,"url":null,"abstract":"\n Today, small-scale liquified natural gas (SSLNG) plants are planned and built in different areas around the globe. Due to the overall market situation and competition, these projects are challenged to decrease capital expenditure (CAPEX), while becoming increasingly efficient to meet mid-size investors' operating expenditure (OPEX) targets and return on investment (ROI) expectations. The main challenges are the overall efficiency of the plant, seal leakage rates, operational flexibility and the plant's space limitations.\n To a big extent, the aforementioned points are closely connected to liquefaction technology selection (either single mixed refrigeration or nitrogen Brayton cycle) as well as the rotating equipment used: Firstly, regarding energy use, the refrigeration compressor is the main power consumer in an SSLNG plant (in addition to pumps and smaller compressors). Secondly, a large amount of process leakage is linked to the seals of the rotating equipment. Regarding the third point, operational flexibility, this parameter is closely related to the deployed compressor and expander, and their respective process characteristics. Lastly, the footprint and equipment size have an impact on the installation costs and ultimately CAPEX.\n Often, especially in a nitrogen Brayton cycle, compressors as well as warm and cold turboexpanders are supplied as single skid each: that is, a nitrogen compressor skid as well as both warm and cold expander compressors installed on another skid. To reach their future objectives, some SSLNG plant operators are taking new approaches that combine these two technologies: compressor and expander applications are installed on one single gearbox and skid – this is called a Compander. This approach is already used in other industry segments and applications, including LNG carriers. Atlas Copco's first land-based LNG refrigeration Compander was installed back in 2002 at a plant in Norway. The Compander design allows for only one gearbox on which compressor and expander stages are mounted, one oil system, one control system and one seal gas panel – instead of having all of these components twice. By applying these bridging technologies, SSLNG plants are finding new ways to improve OPEX while at the same time reducing the financial burden on new projects. In this case study, we discuss how SSLNG plants in Norway and customers in other places have implemented Atlas Copco Gas and Process integrally geared technology that merges the functions of a centrifugal compressor and turboexpander into one compact Compander unit. In addition, different configurations of separate compressors and expanders are discussed and compared to a single-skid (Compander) solution.\n During the discussion, the benefits of a Compander compared to single and separate equipment designs are evaluated.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bridging Compressor and Expander Technologies in SSLNG Processes\",\"authors\":\"Michael Drewes, Tushar Patel\",\"doi\":\"10.2118/197260-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Today, small-scale liquified natural gas (SSLNG) plants are planned and built in different areas around the globe. Due to the overall market situation and competition, these projects are challenged to decrease capital expenditure (CAPEX), while becoming increasingly efficient to meet mid-size investors' operating expenditure (OPEX) targets and return on investment (ROI) expectations. The main challenges are the overall efficiency of the plant, seal leakage rates, operational flexibility and the plant's space limitations.\\n To a big extent, the aforementioned points are closely connected to liquefaction technology selection (either single mixed refrigeration or nitrogen Brayton cycle) as well as the rotating equipment used: Firstly, regarding energy use, the refrigeration compressor is the main power consumer in an SSLNG plant (in addition to pumps and smaller compressors). Secondly, a large amount of process leakage is linked to the seals of the rotating equipment. Regarding the third point, operational flexibility, this parameter is closely related to the deployed compressor and expander, and their respective process characteristics. Lastly, the footprint and equipment size have an impact on the installation costs and ultimately CAPEX.\\n Often, especially in a nitrogen Brayton cycle, compressors as well as warm and cold turboexpanders are supplied as single skid each: that is, a nitrogen compressor skid as well as both warm and cold expander compressors installed on another skid. To reach their future objectives, some SSLNG plant operators are taking new approaches that combine these two technologies: compressor and expander applications are installed on one single gearbox and skid – this is called a Compander. This approach is already used in other industry segments and applications, including LNG carriers. Atlas Copco's first land-based LNG refrigeration Compander was installed back in 2002 at a plant in Norway. The Compander design allows for only one gearbox on which compressor and expander stages are mounted, one oil system, one control system and one seal gas panel – instead of having all of these components twice. By applying these bridging technologies, SSLNG plants are finding new ways to improve OPEX while at the same time reducing the financial burden on new projects. In this case study, we discuss how SSLNG plants in Norway and customers in other places have implemented Atlas Copco Gas and Process integrally geared technology that merges the functions of a centrifugal compressor and turboexpander into one compact Compander unit. In addition, different configurations of separate compressors and expanders are discussed and compared to a single-skid (Compander) solution.\\n During the discussion, the benefits of a Compander compared to single and separate equipment designs are evaluated.\",\"PeriodicalId\":11328,\"journal\":{\"name\":\"Day 4 Thu, November 14, 2019\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197260-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197260-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bridging Compressor and Expander Technologies in SSLNG Processes
Today, small-scale liquified natural gas (SSLNG) plants are planned and built in different areas around the globe. Due to the overall market situation and competition, these projects are challenged to decrease capital expenditure (CAPEX), while becoming increasingly efficient to meet mid-size investors' operating expenditure (OPEX) targets and return on investment (ROI) expectations. The main challenges are the overall efficiency of the plant, seal leakage rates, operational flexibility and the plant's space limitations.
To a big extent, the aforementioned points are closely connected to liquefaction technology selection (either single mixed refrigeration or nitrogen Brayton cycle) as well as the rotating equipment used: Firstly, regarding energy use, the refrigeration compressor is the main power consumer in an SSLNG plant (in addition to pumps and smaller compressors). Secondly, a large amount of process leakage is linked to the seals of the rotating equipment. Regarding the third point, operational flexibility, this parameter is closely related to the deployed compressor and expander, and their respective process characteristics. Lastly, the footprint and equipment size have an impact on the installation costs and ultimately CAPEX.
Often, especially in a nitrogen Brayton cycle, compressors as well as warm and cold turboexpanders are supplied as single skid each: that is, a nitrogen compressor skid as well as both warm and cold expander compressors installed on another skid. To reach their future objectives, some SSLNG plant operators are taking new approaches that combine these two technologies: compressor and expander applications are installed on one single gearbox and skid – this is called a Compander. This approach is already used in other industry segments and applications, including LNG carriers. Atlas Copco's first land-based LNG refrigeration Compander was installed back in 2002 at a plant in Norway. The Compander design allows for only one gearbox on which compressor and expander stages are mounted, one oil system, one control system and one seal gas panel – instead of having all of these components twice. By applying these bridging technologies, SSLNG plants are finding new ways to improve OPEX while at the same time reducing the financial burden on new projects. In this case study, we discuss how SSLNG plants in Norway and customers in other places have implemented Atlas Copco Gas and Process integrally geared technology that merges the functions of a centrifugal compressor and turboexpander into one compact Compander unit. In addition, different configurations of separate compressors and expanders are discussed and compared to a single-skid (Compander) solution.
During the discussion, the benefits of a Compander compared to single and separate equipment designs are evaluated.