靶向肿瘤干细胞Sonic Hedgehog信号通路治疗胶质母细胞瘤

Jiaying Liu
{"title":"靶向肿瘤干细胞Sonic Hedgehog信号通路治疗胶质母细胞瘤","authors":"Jiaying Liu","doi":"10.59566/ijbs.2022.18054","DOIUrl":null,"url":null,"abstract":"Glioblastoma is an aggressive malignant brain tumor, and its five-year relative survival rate for patients is only 6.8 percent. In addition, almost all glioblastomas recur even after intensive treatments including surgery, radiation and chemotherapy, which are believed to be attributed to cancer stem cells (CSCs), a small population of cells existing in a tumor with ability to self-renewal and differentiation. Of multiple signaling pathways, sonic hedgehog signaling is one critical pathway involved in CSCs regulation. Therefore, targeting the sonic hedgehog signaling represents a novel therapy to treat glioblastomas, and significant efforts have been made in recent years to develop the sonic hedgehog signaling inhibitor drugs. This article specifically focuses on recent advances in the sonic hedgehog signaling inhibitor drug development by targeting multiple components of the signaling cascade including sonic hedgehog ligand, Smoothened (SMO) and GLI. Those inhibitors hold a great promise to destroy glioblastoma CSCs and prevent and treat tumor recurrence in the future.","PeriodicalId":13852,"journal":{"name":"International Journal of Biomedical Science : IJBS","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting the Sonic Hedgehog Signaling Pathway of Cancer Stem Cells to Treat Glioblastoma\",\"authors\":\"Jiaying Liu\",\"doi\":\"10.59566/ijbs.2022.18054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma is an aggressive malignant brain tumor, and its five-year relative survival rate for patients is only 6.8 percent. In addition, almost all glioblastomas recur even after intensive treatments including surgery, radiation and chemotherapy, which are believed to be attributed to cancer stem cells (CSCs), a small population of cells existing in a tumor with ability to self-renewal and differentiation. Of multiple signaling pathways, sonic hedgehog signaling is one critical pathway involved in CSCs regulation. Therefore, targeting the sonic hedgehog signaling represents a novel therapy to treat glioblastomas, and significant efforts have been made in recent years to develop the sonic hedgehog signaling inhibitor drugs. This article specifically focuses on recent advances in the sonic hedgehog signaling inhibitor drug development by targeting multiple components of the signaling cascade including sonic hedgehog ligand, Smoothened (SMO) and GLI. Those inhibitors hold a great promise to destroy glioblastoma CSCs and prevent and treat tumor recurrence in the future.\",\"PeriodicalId\":13852,\"journal\":{\"name\":\"International Journal of Biomedical Science : IJBS\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Science : IJBS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59566/ijbs.2022.18054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Science : IJBS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59566/ijbs.2022.18054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤是一种侵袭性恶性脑肿瘤,其患者的5年相对存活率仅为6.8%。此外,几乎所有的胶质母细胞瘤即使在手术、放疗和化疗等强化治疗后也会复发,这被认为是由于肿瘤干细胞(cancer stem cells, CSCs),肿瘤中存在的一小群具有自我更新和分化能力的细胞。在多种信号通路中,sonic hedgehog信号通路是参与CSCs调控的重要途径之一。因此,靶向sonic hedgehog信号是治疗胶质母细胞瘤的一种新疗法,近年来人们在开发sonic hedgehog信号抑制剂药物方面做了大量工作。本文重点介绍了声波刺猬信号抑制剂药物的最新进展,该药物针对信号级联的多种成分,包括声波刺猬配体、Smoothened (SMO)和GLI。这些抑制剂在破坏胶质母细胞瘤CSCs和预防和治疗肿瘤复发方面具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Targeting the Sonic Hedgehog Signaling Pathway of Cancer Stem Cells to Treat Glioblastoma
Glioblastoma is an aggressive malignant brain tumor, and its five-year relative survival rate for patients is only 6.8 percent. In addition, almost all glioblastomas recur even after intensive treatments including surgery, radiation and chemotherapy, which are believed to be attributed to cancer stem cells (CSCs), a small population of cells existing in a tumor with ability to self-renewal and differentiation. Of multiple signaling pathways, sonic hedgehog signaling is one critical pathway involved in CSCs regulation. Therefore, targeting the sonic hedgehog signaling represents a novel therapy to treat glioblastomas, and significant efforts have been made in recent years to develop the sonic hedgehog signaling inhibitor drugs. This article specifically focuses on recent advances in the sonic hedgehog signaling inhibitor drug development by targeting multiple components of the signaling cascade including sonic hedgehog ligand, Smoothened (SMO) and GLI. Those inhibitors hold a great promise to destroy glioblastoma CSCs and prevent and treat tumor recurrence in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tongue Prints - An Information Immune to Forgery Mesenchymal Stem Cells and Their Derivatives for Skin Rejuvenation Fibrodysplasia Ossificans Progressiva: Molecular Mechanism, Drug Development and Current Clinical Trials EFNA3 is involved in Immune Regulation and the Ras Signal Pathway in Hepatocellular Carcinoma Recent Advance in Understanding Vitamin D in Postpartum Depression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1