RF-PUF:通过使用原位机器学习对无线节点进行认证来增强物联网安全性

Baibhab Chatterjee, D. Das, Shreyas Sen
{"title":"RF-PUF:通过使用原位机器学习对无线节点进行认证来增强物联网安全性","authors":"Baibhab Chatterjee, D. Das, Shreyas Sen","doi":"10.1109/HST.2018.8383916","DOIUrl":null,"url":null,"abstract":"Physical unclonable functions (PUF) in silicon exploit die-to-die manufacturing variations during fabrication for uniquely identifying each die. Since it is practically a hard problem to recreate exact silicon features across dies, a PUF-based authentication system is robust, secure and cost-effective, as long as bias removal and error correction are taken into account. In this work, we utilize the effects of inherent process variation on analog and radio-frequency (RF) properties of multiple wireless transmitters (Tx) in a sensor network, and detect the features at the receiver (Rx) using a deep neural network based framework. The proposed mechanism/ framework, called RF-PUF, harnesses already-existing RF communication hardware and does not require any additional PUF-generation circuitry in the Tx for practical implementation. Simulation results indicate that the RF-PUF framework can distinguish up to 10000 transmitters (with standard foundry defined variations for a 65 nm process, leading to non-idealities such as LO offset and I-Q imbalance) under varying channel conditions, with a probability of false detection < 10−3.","PeriodicalId":6574,"journal":{"name":"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"66 1","pages":"205-208"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"RF-PUF: IoT security enhancement through authentication of wireless nodes using in-situ machine learning\",\"authors\":\"Baibhab Chatterjee, D. Das, Shreyas Sen\",\"doi\":\"10.1109/HST.2018.8383916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical unclonable functions (PUF) in silicon exploit die-to-die manufacturing variations during fabrication for uniquely identifying each die. Since it is practically a hard problem to recreate exact silicon features across dies, a PUF-based authentication system is robust, secure and cost-effective, as long as bias removal and error correction are taken into account. In this work, we utilize the effects of inherent process variation on analog and radio-frequency (RF) properties of multiple wireless transmitters (Tx) in a sensor network, and detect the features at the receiver (Rx) using a deep neural network based framework. The proposed mechanism/ framework, called RF-PUF, harnesses already-existing RF communication hardware and does not require any additional PUF-generation circuitry in the Tx for practical implementation. Simulation results indicate that the RF-PUF framework can distinguish up to 10000 transmitters (with standard foundry defined variations for a 65 nm process, leading to non-idealities such as LO offset and I-Q imbalance) under varying channel conditions, with a probability of false detection < 10−3.\",\"PeriodicalId\":6574,\"journal\":{\"name\":\"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"volume\":\"66 1\",\"pages\":\"205-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2018.8383916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2018.8383916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

硅中的物理不可克隆功能(PUF)在制造过程中利用模具到模具的制造变化来唯一地识别每个模具。由于在芯片上重建精确的硅特征实际上是一个难题,因此只要考虑到消除偏置和纠错,基于puf的认证系统就具有鲁棒性,安全性和成本效益。在这项工作中,我们利用固有过程变化对传感器网络中多个无线发射器(Tx)的模拟和射频(RF)特性的影响,并使用基于深度神经网络的框架检测接收器(Rx)的特征。所提出的机制/框架,称为RF- puf,利用已经存在的RF通信硬件,并且不需要在Tx中额外的puf生成电路进行实际实施。仿真结果表明,RF-PUF框架可以在不同信道条件下区分多达10000个发射机(对于65nm工艺,标准铸造厂定义的变化会导致LO偏移和I-Q不平衡等非理想情况),误检概率< 10−3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RF-PUF: IoT security enhancement through authentication of wireless nodes using in-situ machine learning
Physical unclonable functions (PUF) in silicon exploit die-to-die manufacturing variations during fabrication for uniquely identifying each die. Since it is practically a hard problem to recreate exact silicon features across dies, a PUF-based authentication system is robust, secure and cost-effective, as long as bias removal and error correction are taken into account. In this work, we utilize the effects of inherent process variation on analog and radio-frequency (RF) properties of multiple wireless transmitters (Tx) in a sensor network, and detect the features at the receiver (Rx) using a deep neural network based framework. The proposed mechanism/ framework, called RF-PUF, harnesses already-existing RF communication hardware and does not require any additional PUF-generation circuitry in the Tx for practical implementation. Simulation results indicate that the RF-PUF framework can distinguish up to 10000 transmitters (with standard foundry defined variations for a 65 nm process, leading to non-idealities such as LO offset and I-Q imbalance) under varying channel conditions, with a probability of false detection < 10−3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attack on a Microcomputer-Based Random Number Generator Using Auto-synchronization Comparison of cost of protection against differential power analysis of selected authenticated ciphers Large scale RO PUF analysis over slice type, evaluation time and temperature on 28nm Xilinx FPGAs CTCG: Charge-trap based camouflaged gates for reverse engineering prevention Value prediction for security (VPsec): Countering fault attacks in modern microprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1