基于视觉特征嵌入的分类排序方法分析目标类别

Ravi Kiran Sarvadevabhatla, Raviteja Meesala, Manjunath Hegde, R. Venkatesh Babu
{"title":"基于视觉特征嵌入的分类排序方法分析目标类别","authors":"Ravi Kiran Sarvadevabhatla, Raviteja Meesala, Manjunath Hegde, R. Venkatesh Babu","doi":"10.1145/3009977.3010037","DOIUrl":null,"url":null,"abstract":"Visualizing 2-D/3-D embeddings of image features can help gain an intuitive understanding of the image category landscape. However, popular visualization methods of visualizing such embeddings (e.g. color-coding by category) are impractical when the number of categories is large. To address this and other shortcomings, we propose novel quantitative measures defined on image feature embeddings. Each measure produces a ranked ordering of the categories and provides an intuitive vantage point from which to view the entire set of categories. As an experimental testbed, we use deep features obtained from category-epitomes, a recently introduced minimalist visual representation, across 160 object categories. We embed the features in a visualization-friendly yet similarity-preserving 2-D manifold and analyze the inter/intra-category distributions of these embeddings using the proposed measures. Our analysis demonstrates that the category ordering methods enable new insights for the domain of large-category object representations. Moreover, our ordering measure approach is general in nature and can be applied to any feature-based representation of categories.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"53 1","pages":"79:1-79:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing object categories via novel category ranking measures defined on visual feature embeddings\",\"authors\":\"Ravi Kiran Sarvadevabhatla, Raviteja Meesala, Manjunath Hegde, R. Venkatesh Babu\",\"doi\":\"10.1145/3009977.3010037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizing 2-D/3-D embeddings of image features can help gain an intuitive understanding of the image category landscape. However, popular visualization methods of visualizing such embeddings (e.g. color-coding by category) are impractical when the number of categories is large. To address this and other shortcomings, we propose novel quantitative measures defined on image feature embeddings. Each measure produces a ranked ordering of the categories and provides an intuitive vantage point from which to view the entire set of categories. As an experimental testbed, we use deep features obtained from category-epitomes, a recently introduced minimalist visual representation, across 160 object categories. We embed the features in a visualization-friendly yet similarity-preserving 2-D manifold and analyze the inter/intra-category distributions of these embeddings using the proposed measures. Our analysis demonstrates that the category ordering methods enable new insights for the domain of large-category object representations. Moreover, our ordering measure approach is general in nature and can be applied to any feature-based representation of categories.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"53 1\",\"pages\":\"79:1-79:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可视化图像特征的二维/三维嵌入可以帮助获得对图像类别景观的直观理解。然而,当类别数量很大时,流行的可视化方法(例如按类别进行颜色编码)是不切实际的。为了解决这个问题和其他缺点,我们提出了基于图像特征嵌入的新的定量度量。每个度量都会产生类别的排序,并提供直观的有利位置,从中查看整个类别集。作为实验测试平台,我们使用了从最近引入的极简主义视觉表示类别-缩影(category-epitomes)中获得的深度特征,涵盖了160个对象类别。我们将特征嵌入到可视化友好且保持相似性的二维流形中,并使用所提出的措施分析这些嵌入的类别间/类别内分布。我们的分析表明,类别排序方法为大类别对象表示领域提供了新的见解。此外,我们的排序度量方法本质上是通用的,可以应用于任何基于特征的类别表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing object categories via novel category ranking measures defined on visual feature embeddings
Visualizing 2-D/3-D embeddings of image features can help gain an intuitive understanding of the image category landscape. However, popular visualization methods of visualizing such embeddings (e.g. color-coding by category) are impractical when the number of categories is large. To address this and other shortcomings, we propose novel quantitative measures defined on image feature embeddings. Each measure produces a ranked ordering of the categories and provides an intuitive vantage point from which to view the entire set of categories. As an experimental testbed, we use deep features obtained from category-epitomes, a recently introduced minimalist visual representation, across 160 object categories. We embed the features in a visualization-friendly yet similarity-preserving 2-D manifold and analyze the inter/intra-category distributions of these embeddings using the proposed measures. Our analysis demonstrates that the category ordering methods enable new insights for the domain of large-category object representations. Moreover, our ordering measure approach is general in nature and can be applied to any feature-based representation of categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1