{"title":"解耦保守局部不连续Galerkin方法对Klein-Gordon-Schrödinger方程的最优误差估计","authors":"He Yang","doi":"10.12941/JKSIAM.2020.24.039","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"161 11 1","pages":"39-78"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schrödinger equations\",\"authors\":\"He Yang\",\"doi\":\"10.12941/JKSIAM.2020.24.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"161 11 1\",\"pages\":\"39-78\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2020.24.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2020.24.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schrödinger equations
In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.