U. Goerke, C. H. Park, Wenqing Wang, Ashok Singh, O. Kolditz
{"title":"深盐水含水层注入CO2诱导多相流体力学过程的数值模拟","authors":"U. Goerke, C. H. Park, Wenqing Wang, Ashok Singh, O. Kolditz","doi":"10.2516/OGST/2010032","DOIUrl":null,"url":null,"abstract":"In this paper, the conceptual modeling and the numerical simulation of two-phase flow during CO2 injection into deep saline aquifers is presented. The work focuses on isothermal short-term processes in the vicinity of the injection well. Governing differential equations are based on balance laws for mass and momentum, and completed by constitutive relations for the fluid and solid phases as well as their mutual interactions. Constraint conditions for the partial saturations and the pressure fractions of CO2 and brine are defined. To characterize the stress state in the solid matrix, the effective stress principle is applied. The coupled problem is solved using the inhouse scientific code OpenGeoSys (an open source finite element code) and verified with benchmarks.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"26 1","pages":"105-118"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Numerical Simulation of Multiphase Hydromechanical Processes Induced by CO2 Injection into Deep Saline Aquifers\",\"authors\":\"U. Goerke, C. H. Park, Wenqing Wang, Ashok Singh, O. Kolditz\",\"doi\":\"10.2516/OGST/2010032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the conceptual modeling and the numerical simulation of two-phase flow during CO2 injection into deep saline aquifers is presented. The work focuses on isothermal short-term processes in the vicinity of the injection well. Governing differential equations are based on balance laws for mass and momentum, and completed by constitutive relations for the fluid and solid phases as well as their mutual interactions. Constraint conditions for the partial saturations and the pressure fractions of CO2 and brine are defined. To characterize the stress state in the solid matrix, the effective stress principle is applied. The coupled problem is solved using the inhouse scientific code OpenGeoSys (an open source finite element code) and verified with benchmarks.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":\"26 1\",\"pages\":\"105-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2010032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2010032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Simulation of Multiphase Hydromechanical Processes Induced by CO2 Injection into Deep Saline Aquifers
In this paper, the conceptual modeling and the numerical simulation of two-phase flow during CO2 injection into deep saline aquifers is presented. The work focuses on isothermal short-term processes in the vicinity of the injection well. Governing differential equations are based on balance laws for mass and momentum, and completed by constitutive relations for the fluid and solid phases as well as their mutual interactions. Constraint conditions for the partial saturations and the pressure fractions of CO2 and brine are defined. To characterize the stress state in the solid matrix, the effective stress principle is applied. The coupled problem is solved using the inhouse scientific code OpenGeoSys (an open source finite element code) and verified with benchmarks.