{"title":"磁赤铁矿(γ-Fe2O3)的合成及其在医疗诊断和太阳能方面的应用","authors":"S. Kour, R. Sharma, Rohit Jasrotia, V. Singh","doi":"10.1063/1.5122451","DOIUrl":null,"url":null,"abstract":"Magnetic nanoparticles are of great interest due to structure and composition of materials. MNP consists of cations, e.g., Fe, Ni, Co, Cr, and their oxides, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), hematite (α- Fe2O3), cobalt ferrite (Fe2CoO4), and chromium dioxide (CrO2). Magnetic nanoparticles are gaining interest due to their useful electrical and magnetic properties and applications in magnetic storage, recording media, photo catalysis, and medical diagontics as well as in solar energy applications. Magnetic nanoparticles are regarded as the most practically important and useful due to its simple synthesis and the interesting magnetic characteristics of its nano-sized objects. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of magnetic nanoparticles with a control over the size, morphology and the magnetic properties.Magnetic nanoparticles are of great interest due to structure and composition of materials. MNP consists of cations, e.g., Fe, Ni, Co, Cr, and their oxides, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), hematite (α- Fe2O3), cobalt ferrite (Fe2CoO4), and chromium dioxide (CrO2). Magnetic nanoparticles are gaining interest due to their useful electrical and magnetic properties and applications in magnetic storage, recording media, photo catalysis, and medical diagontics as well as in solar energy applications. Magnetic nanoparticles are regarded as the most practically important and useful due to its simple synthesis and the interesting magnetic characteristics of its nano-sized objects. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of magnetic nanoparticles with a control over the size, morphology and the magnetic properties.","PeriodicalId":7262,"journal":{"name":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications\",\"authors\":\"S. Kour, R. Sharma, Rohit Jasrotia, V. Singh\",\"doi\":\"10.1063/1.5122451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nanoparticles are of great interest due to structure and composition of materials. MNP consists of cations, e.g., Fe, Ni, Co, Cr, and their oxides, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), hematite (α- Fe2O3), cobalt ferrite (Fe2CoO4), and chromium dioxide (CrO2). Magnetic nanoparticles are gaining interest due to their useful electrical and magnetic properties and applications in magnetic storage, recording media, photo catalysis, and medical diagontics as well as in solar energy applications. Magnetic nanoparticles are regarded as the most practically important and useful due to its simple synthesis and the interesting magnetic characteristics of its nano-sized objects. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of magnetic nanoparticles with a control over the size, morphology and the magnetic properties.Magnetic nanoparticles are of great interest due to structure and composition of materials. MNP consists of cations, e.g., Fe, Ni, Co, Cr, and their oxides, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), hematite (α- Fe2O3), cobalt ferrite (Fe2CoO4), and chromium dioxide (CrO2). Magnetic nanoparticles are gaining interest due to their useful electrical and magnetic properties and applications in magnetic storage, recording media, photo catalysis, and medical diagontics as well as in solar energy applications. Magnetic nanoparticles are regarded as the most practically important and useful due to its simple synthesis and the interesting magnetic characteristics of its nano-sized objects. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of magnetic nanoparticles with a control over the size, morphology and the magnetic properties.\",\"PeriodicalId\":7262,\"journal\":{\"name\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5122451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5122451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications
Magnetic nanoparticles are of great interest due to structure and composition of materials. MNP consists of cations, e.g., Fe, Ni, Co, Cr, and their oxides, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), hematite (α- Fe2O3), cobalt ferrite (Fe2CoO4), and chromium dioxide (CrO2). Magnetic nanoparticles are gaining interest due to their useful electrical and magnetic properties and applications in magnetic storage, recording media, photo catalysis, and medical diagontics as well as in solar energy applications. Magnetic nanoparticles are regarded as the most practically important and useful due to its simple synthesis and the interesting magnetic characteristics of its nano-sized objects. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of magnetic nanoparticles with a control over the size, morphology and the magnetic properties.Magnetic nanoparticles are of great interest due to structure and composition of materials. MNP consists of cations, e.g., Fe, Ni, Co, Cr, and their oxides, such as magnetite (Fe3O4), maghemite (γ-Fe2O3), hematite (α- Fe2O3), cobalt ferrite (Fe2CoO4), and chromium dioxide (CrO2). Magnetic nanoparticles are gaining interest due to their useful electrical and magnetic properties and applications in magnetic storage, recording media, photo catalysis, and medical diagontics as well as in solar energy applications. Magnetic nanoparticles are regarded as the most practically important and useful due to its simple synthesis and the interesting magnetic characteristics of its nano-sized objects. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of magnetic nanoparticles with a control over the size, morphology and the magnetic properties.