{"title":"类群和相干态","authors":"F. Cosmo, Alberto Ibort, G. Marmo","doi":"10.1142/S1230161219500173","DOIUrl":null,"url":null,"abstract":"Schwinger’s algebra of selective measurements has a natural interpretation in terms of groupoids. This approach is pushed forward in this paper to show that the theory of coherent states has a natural setting in the framework of groupoids. Thus given a quantum mechanical system with associated Hilbert space determined by a representation of a groupoid, it is shown that any invariant subset of the group of invertible elements in the groupoid algebra determines a family of generalized coherent states provided that a completeness condition is satisfied. The standard coherent states for the harmonic oscillator as well as generalized coherent states for f-oscillators are exemplified in this picture.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"72 1","pages":"1950017:1-1950017:22"},"PeriodicalIF":1.3000,"publicationDate":"2019-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Groupoids and Coherent States\",\"authors\":\"F. Cosmo, Alberto Ibort, G. Marmo\",\"doi\":\"10.1142/S1230161219500173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schwinger’s algebra of selective measurements has a natural interpretation in terms of groupoids. This approach is pushed forward in this paper to show that the theory of coherent states has a natural setting in the framework of groupoids. Thus given a quantum mechanical system with associated Hilbert space determined by a representation of a groupoid, it is shown that any invariant subset of the group of invertible elements in the groupoid algebra determines a family of generalized coherent states provided that a completeness condition is satisfied. The standard coherent states for the harmonic oscillator as well as generalized coherent states for f-oscillators are exemplified in this picture.\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"72 1\",\"pages\":\"1950017:1-1950017:22\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S1230161219500173\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161219500173","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Schwinger’s algebra of selective measurements has a natural interpretation in terms of groupoids. This approach is pushed forward in this paper to show that the theory of coherent states has a natural setting in the framework of groupoids. Thus given a quantum mechanical system with associated Hilbert space determined by a representation of a groupoid, it is shown that any invariant subset of the group of invertible elements in the groupoid algebra determines a family of generalized coherent states provided that a completeness condition is satisfied. The standard coherent states for the harmonic oscillator as well as generalized coherent states for f-oscillators are exemplified in this picture.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.