Basra Farooq Dar, M. Nadeem, S. Khalid, Farzana Riaz, Yasir Mahmood, Ghias Hameed
{"title":"利用不同的监督机器学习算法提高委托分类器的分类能力","authors":"Basra Farooq Dar, M. Nadeem, S. Khalid, Farzana Riaz, Yasir Mahmood, Ghias Hameed","doi":"10.5539/cis.v16n3p22","DOIUrl":null,"url":null,"abstract":"Cancer Classification & Prediction Is Vitally Important for Cancer Diagnosis. DNA Microarray Technology Has Provided Genetic Data That Has Facilitated Scientists Perform Cancer Research. Traditional Methods of Classification Have Certain Limitations E.G. Traditionally A Proposed DSS Uses A Single Classifier at A Time for Classification or Prediction Purposes. To Increase Classification Accuracy, Reject Option Classifiers Has Been Proposed in Machine Learning Literature. In A Reject Option Classifier, A Rejection Region Is Defined and The Samples Fall in That Region Are Not Classified by The Classifier. The Unclassifiable Samples Are Rejected by Classifier in Order to Improve Classifier’s Accuracy. However, These Rejections Affect the Prediction Rate of The Classifier as Well. To Overcome the Problem of Low Prediction Rates by Increased Rejection of Samples by A Single Classifier, the “Delegating Classifiers” Provide Better Accuracy at Less Rejection Rate. Different Classifiers Such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), K Nearest Neighbor (KNN) Etc. Have Been Proposed. Moreover, Traditionally, Same Learner Is Used As “Delegated” And “Delegating” Classifier. This Research Has Investigated the Effects of Using Different Machine Learning Classifiers in Both of The Delegated and Delegating Classifiers, And the Results Obtained Showed That Proposed Method Gives High Accuracy and Increases the Prediction Rate.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"43 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Classification Ability of Delegating Classifiers Using Different Supervised Machine Learning Algorithms\",\"authors\":\"Basra Farooq Dar, M. Nadeem, S. Khalid, Farzana Riaz, Yasir Mahmood, Ghias Hameed\",\"doi\":\"10.5539/cis.v16n3p22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer Classification & Prediction Is Vitally Important for Cancer Diagnosis. DNA Microarray Technology Has Provided Genetic Data That Has Facilitated Scientists Perform Cancer Research. Traditional Methods of Classification Have Certain Limitations E.G. Traditionally A Proposed DSS Uses A Single Classifier at A Time for Classification or Prediction Purposes. To Increase Classification Accuracy, Reject Option Classifiers Has Been Proposed in Machine Learning Literature. In A Reject Option Classifier, A Rejection Region Is Defined and The Samples Fall in That Region Are Not Classified by The Classifier. The Unclassifiable Samples Are Rejected by Classifier in Order to Improve Classifier’s Accuracy. However, These Rejections Affect the Prediction Rate of The Classifier as Well. To Overcome the Problem of Low Prediction Rates by Increased Rejection of Samples by A Single Classifier, the “Delegating Classifiers” Provide Better Accuracy at Less Rejection Rate. Different Classifiers Such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), K Nearest Neighbor (KNN) Etc. Have Been Proposed. Moreover, Traditionally, Same Learner Is Used As “Delegated” And “Delegating” Classifier. This Research Has Investigated the Effects of Using Different Machine Learning Classifiers in Both of The Delegated and Delegating Classifiers, And the Results Obtained Showed That Proposed Method Gives High Accuracy and Increases the Prediction Rate.\",\"PeriodicalId\":50636,\"journal\":{\"name\":\"Computer Science and Information Systems\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v16n3p22\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5539/cis.v16n3p22","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Improving the Classification Ability of Delegating Classifiers Using Different Supervised Machine Learning Algorithms
Cancer Classification & Prediction Is Vitally Important for Cancer Diagnosis. DNA Microarray Technology Has Provided Genetic Data That Has Facilitated Scientists Perform Cancer Research. Traditional Methods of Classification Have Certain Limitations E.G. Traditionally A Proposed DSS Uses A Single Classifier at A Time for Classification or Prediction Purposes. To Increase Classification Accuracy, Reject Option Classifiers Has Been Proposed in Machine Learning Literature. In A Reject Option Classifier, A Rejection Region Is Defined and The Samples Fall in That Region Are Not Classified by The Classifier. The Unclassifiable Samples Are Rejected by Classifier in Order to Improve Classifier’s Accuracy. However, These Rejections Affect the Prediction Rate of The Classifier as Well. To Overcome the Problem of Low Prediction Rates by Increased Rejection of Samples by A Single Classifier, the “Delegating Classifiers” Provide Better Accuracy at Less Rejection Rate. Different Classifiers Such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), K Nearest Neighbor (KNN) Etc. Have Been Proposed. Moreover, Traditionally, Same Learner Is Used As “Delegated” And “Delegating” Classifier. This Research Has Investigated the Effects of Using Different Machine Learning Classifiers in Both of The Delegated and Delegating Classifiers, And the Results Obtained Showed That Proposed Method Gives High Accuracy and Increases the Prediction Rate.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.