{"title":"评估马丁斯公式和桑普森公式在印度人群中计算低密度脂蛋白胆固醇的性能:单中心回顾性研究","authors":"Shrimanjunath Sankanagoudar, Sojit Tomo, Andystar Syiemlieh, Prem Prakash Sharma, Mithu Banerjee, Praveen Sharma","doi":"10.1007/s12291-023-01142-3","DOIUrl":null,"url":null,"abstract":"<p><p>Various formulae had been derived to calculate the LDL-C from other lipid profile parameters to supplant the need for direct estimation. Martin's, Sampson's, and Cordova's formulae are recently derived formulae for calculating LDL-C. However, no study has been undertaken till now to verify the newer formulae viz. Martins's and Sampson's in Indian population. The retrospective cross-sectional study was carried out after obtaining approval from the Institutional Ethics Committee on human subject research. The lipid profile data were collected for a period of 17 months from January 2020 to May 2021. The formulae proposed by Friedewald, Cordova, Anandaraja, Martin, and Sampson were used to assess calculated LDL-C. Intraclass correlations were performed to assess the effectiveness of each formula when compared with direct estimation. In our study, we observed that LDL-C calculated using Martin was observed to be closer to that of direct estimation. The bias observed was lowest for Martin's formulae, followed by Sampson's. Intraclass correlation analysis for absolute agreement demonstrated Cordova, Martin, and Sampson to have an average ICC > 0.9, with Martin, and Sampson having a <i>p</i> value < 0.05. Martin fared superior to other formulae in intraclass correlation in patients with LDL > 70. In patients with TG below 200 mg/dL, Martin, and Sampson had a significant correlation with comparable average ICC. However, in patients with TG > 300 mg/dL, Cordova appears to fare better than all other formulae. Our study demonstrated a distinctly superior performance of Martin's formula over Friedewald's formula in the Indian patient population.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study.\",\"authors\":\"Shrimanjunath Sankanagoudar, Sojit Tomo, Andystar Syiemlieh, Prem Prakash Sharma, Mithu Banerjee, Praveen Sharma\",\"doi\":\"10.1007/s12291-023-01142-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various formulae had been derived to calculate the LDL-C from other lipid profile parameters to supplant the need for direct estimation. Martin's, Sampson's, and Cordova's formulae are recently derived formulae for calculating LDL-C. However, no study has been undertaken till now to verify the newer formulae viz. Martins's and Sampson's in Indian population. The retrospective cross-sectional study was carried out after obtaining approval from the Institutional Ethics Committee on human subject research. The lipid profile data were collected for a period of 17 months from January 2020 to May 2021. The formulae proposed by Friedewald, Cordova, Anandaraja, Martin, and Sampson were used to assess calculated LDL-C. Intraclass correlations were performed to assess the effectiveness of each formula when compared with direct estimation. In our study, we observed that LDL-C calculated using Martin was observed to be closer to that of direct estimation. The bias observed was lowest for Martin's formulae, followed by Sampson's. Intraclass correlation analysis for absolute agreement demonstrated Cordova, Martin, and Sampson to have an average ICC > 0.9, with Martin, and Sampson having a <i>p</i> value < 0.05. Martin fared superior to other formulae in intraclass correlation in patients with LDL > 70. In patients with TG below 200 mg/dL, Martin, and Sampson had a significant correlation with comparable average ICC. However, in patients with TG > 300 mg/dL, Cordova appears to fare better than all other formulae. Our study demonstrated a distinctly superior performance of Martin's formula over Friedewald's formula in the Indian patient population.</p>\",\"PeriodicalId\":13280,\"journal\":{\"name\":\"Indian Journal of Clinical Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Clinical Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12291-023-01142-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Clinical Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12291-023-01142-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study.
Various formulae had been derived to calculate the LDL-C from other lipid profile parameters to supplant the need for direct estimation. Martin's, Sampson's, and Cordova's formulae are recently derived formulae for calculating LDL-C. However, no study has been undertaken till now to verify the newer formulae viz. Martins's and Sampson's in Indian population. The retrospective cross-sectional study was carried out after obtaining approval from the Institutional Ethics Committee on human subject research. The lipid profile data were collected for a period of 17 months from January 2020 to May 2021. The formulae proposed by Friedewald, Cordova, Anandaraja, Martin, and Sampson were used to assess calculated LDL-C. Intraclass correlations were performed to assess the effectiveness of each formula when compared with direct estimation. In our study, we observed that LDL-C calculated using Martin was observed to be closer to that of direct estimation. The bias observed was lowest for Martin's formulae, followed by Sampson's. Intraclass correlation analysis for absolute agreement demonstrated Cordova, Martin, and Sampson to have an average ICC > 0.9, with Martin, and Sampson having a p value < 0.05. Martin fared superior to other formulae in intraclass correlation in patients with LDL > 70. In patients with TG below 200 mg/dL, Martin, and Sampson had a significant correlation with comparable average ICC. However, in patients with TG > 300 mg/dL, Cordova appears to fare better than all other formulae. Our study demonstrated a distinctly superior performance of Martin's formula over Friedewald's formula in the Indian patient population.
期刊介绍:
The primary mission of the journal is to promote improvement in the health and well-being of community through the development and practice of clinical biochemistry and dissemination of knowledge and recent advances in this discipline among professionals, diagnostics industry, government and non-government organizations. Indian Journal of Clinical Biochemistry (IJCB) publishes peer reviewed articles that contribute to the existing knowledge in all fields of Clinical biochemistry, either experimental or theoretical, particularly deal with the applications of biochemistry, molecular biology, genetics, biotechnology, and immunology to the diagnosis, treatment, monitoring and prevention of human diseases. The articles published also include those covering the analytical and molecular diagnostic techniques, instrumentation, data processing, quality assurance and accreditation aspects of the clinical investigations in which chemistry has played a major role, or laboratory animal studies with biochemical and clinical relevance.