toda型分-分数振子的下拉高原及其在草鱼卵聚集中的应用

IF 2.8 4区 工程技术 Q1 ACOUSTICS Journal of Low Frequency Noise Vibration and Active Control Pub Date : 2023-06-26 DOI:10.1177/14613484231185490
J. Niu
{"title":"toda型分-分数振子的下拉高原及其在草鱼卵聚集中的应用","authors":"J. Niu","doi":"10.1177/14613484231185490","DOIUrl":null,"url":null,"abstract":"Grass carp’s roes should be agglomerated together for maximizing their survival rate against various predators. Any vibration induced by any environmental perturbation should be attenuated immediately. A Toda-like fractal-fractional oscillator is established, which shows a low-frequency property for most cases; however, the grass carp has evolved a very ability to attenuate the perturbated vibration by sticky adhesion. The pull-down stability of the roes’ vibration is discovered through the results of phase diagrams. The mathematical analysis reveals that there is a pull-down plateau for the attenuating process, the plateau’s height and width are discussed graphically, and the main factors affecting the plateau’s properties are elucidated. The paper offers a totally new window for biomechanics, especially for biomimicking design of chatter vibration systems inspired by the agglomerated roes.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pull-down plateau of a Toda-like fractal-fractional oscillator and its application in grass carp’s roes’ agglomeration\",\"authors\":\"J. Niu\",\"doi\":\"10.1177/14613484231185490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grass carp’s roes should be agglomerated together for maximizing their survival rate against various predators. Any vibration induced by any environmental perturbation should be attenuated immediately. A Toda-like fractal-fractional oscillator is established, which shows a low-frequency property for most cases; however, the grass carp has evolved a very ability to attenuate the perturbated vibration by sticky adhesion. The pull-down stability of the roes’ vibration is discovered through the results of phase diagrams. The mathematical analysis reveals that there is a pull-down plateau for the attenuating process, the plateau’s height and width are discussed graphically, and the main factors affecting the plateau’s properties are elucidated. The paper offers a totally new window for biomechanics, especially for biomimicking design of chatter vibration systems inspired by the agglomerated roes.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231185490\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231185490","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

草鱼的卵应聚集在一起,以最大限度地提高其在各种捕食者中的存活率。由任何环境扰动引起的任何振动都应立即衰减。建立了一个类toda分形-分数型振子,该振子在大多数情况下具有低频特性;然而,草鱼已经进化出了一种通过粘着来减弱扰动振动的能力。通过相图的分析结果,发现了转子振动的下拉稳定性。数学分析表明,在衰减过程中存在一个下拉高原,用图形讨论了高原的高度和宽度,并阐明了影响高原性质的主要因素。本文的研究为生物力学研究,特别是以结块为灵感的颤振系统的仿生设计提供了一个全新的窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pull-down plateau of a Toda-like fractal-fractional oscillator and its application in grass carp’s roes’ agglomeration
Grass carp’s roes should be agglomerated together for maximizing their survival rate against various predators. Any vibration induced by any environmental perturbation should be attenuated immediately. A Toda-like fractal-fractional oscillator is established, which shows a low-frequency property for most cases; however, the grass carp has evolved a very ability to attenuate the perturbated vibration by sticky adhesion. The pull-down stability of the roes’ vibration is discovered through the results of phase diagrams. The mathematical analysis reveals that there is a pull-down plateau for the attenuating process, the plateau’s height and width are discussed graphically, and the main factors affecting the plateau’s properties are elucidated. The paper offers a totally new window for biomechanics, especially for biomimicking design of chatter vibration systems inspired by the agglomerated roes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.30%
发文量
98
审稿时长
15 weeks
期刊介绍: Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.
期刊最新文献
Dynamical analysis of a fractional-order nonlinear two-degree-of-freedom vehicle system by incremental harmonic balance method Aeroelastic investigation on an all-movable horizontal tail with free-play nonlinearity Dynamic characteristics of vibration localization of mistuned bladed disk due to shroud and blade damages Acoustic cloaking design based on penetration manipulation with combination acoustic metamaterials Study on the interaction between shaking table and eccentric load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1