Q. Guo, William Deng, O. Bebek, M. C. Cavusoglu, C. Mastrangelo, D. Young
{"title":"采用MEMS可穿戴式地面反应传感器阵列和接口ASIC的个人惯性导航系统,在不使用GPS的情况下,在3km步行距离内实现了5.5m的定位精度","authors":"Q. Guo, William Deng, O. Bebek, M. C. Cavusoglu, C. Mastrangelo, D. Young","doi":"10.1109/ISSCC.2018.8310243","DOIUrl":null,"url":null,"abstract":"An accurate personal inertial navigation system under GPS-denied environment is highly critical for demanding applications such as firefighting, rescue missions, and military operations. Location-aware computation for large-area mixed reality also calls for accurate personal position tracking. Position calculation can be accomplished by using an inertial measurement unit (IMU) composed of a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. A gyroscope and magnetometer together can provide the orientation information, while the displacement can be obtained by integrating the acceleration data over time. A MEMS-based IMU is attractive for its small size, low power and low cost. However, such devices exhibit a limited accuracy, large offset, and time drift, which can result in an excessive position error over time. To achieve high-performance navigation, it is critical to accurately reset the IMU time-integration during each step when the foot contacts the ground. Furthermore, correcting the IMU inherent inaccuracy, bias, and time drift becomes important for improving system performance.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"101 9 1","pages":"180-182"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Personal inertial navigation system employing MEMS wearable ground reaction sensor array and interface ASIC achieving a position accuracy of 5.5m over 3km walking distance without GPS\",\"authors\":\"Q. Guo, William Deng, O. Bebek, M. C. Cavusoglu, C. Mastrangelo, D. Young\",\"doi\":\"10.1109/ISSCC.2018.8310243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate personal inertial navigation system under GPS-denied environment is highly critical for demanding applications such as firefighting, rescue missions, and military operations. Location-aware computation for large-area mixed reality also calls for accurate personal position tracking. Position calculation can be accomplished by using an inertial measurement unit (IMU) composed of a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. A gyroscope and magnetometer together can provide the orientation information, while the displacement can be obtained by integrating the acceleration data over time. A MEMS-based IMU is attractive for its small size, low power and low cost. However, such devices exhibit a limited accuracy, large offset, and time drift, which can result in an excessive position error over time. To achieve high-performance navigation, it is critical to accurately reset the IMU time-integration during each step when the foot contacts the ground. Furthermore, correcting the IMU inherent inaccuracy, bias, and time drift becomes important for improving system performance.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"101 9 1\",\"pages\":\"180-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personal inertial navigation system employing MEMS wearable ground reaction sensor array and interface ASIC achieving a position accuracy of 5.5m over 3km walking distance without GPS
An accurate personal inertial navigation system under GPS-denied environment is highly critical for demanding applications such as firefighting, rescue missions, and military operations. Location-aware computation for large-area mixed reality also calls for accurate personal position tracking. Position calculation can be accomplished by using an inertial measurement unit (IMU) composed of a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. A gyroscope and magnetometer together can provide the orientation information, while the displacement can be obtained by integrating the acceleration data over time. A MEMS-based IMU is attractive for its small size, low power and low cost. However, such devices exhibit a limited accuracy, large offset, and time drift, which can result in an excessive position error over time. To achieve high-performance navigation, it is critical to accurately reset the IMU time-integration during each step when the foot contacts the ground. Furthermore, correcting the IMU inherent inaccuracy, bias, and time drift becomes important for improving system performance.