承载能力的新方法:从先验处方到基于潜在机制和动力学的后验推导

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Earth and Planetary Sciences Pub Date : 2020-05-29 DOI:10.1146/annurev-earth-053018-060428
Safa Mote, Jorge Rivas, E. Kalnay
{"title":"承载能力的新方法:从先验处方到基于潜在机制和动力学的后验推导","authors":"Safa Mote, Jorge Rivas, E. Kalnay","doi":"10.1146/annurev-earth-053018-060428","DOIUrl":null,"url":null,"abstract":"The Human System is within the Earth System. They should be modeled bidirectionally coupled, as they are in reality. The Human System is rapidly expanding, mostly due to consumption of fossil fuels (approximately one million times faster than Nature accumulated them) and fossil water. This threatens not only other planetary subsystems but also the Human System itself. Carrying Capacity is an important tool to measure sustainability, but there is a widespread view that Carrying Capacity is not applicable to humans. Carrying Capacity has generally been prescribed a priori, mostly using the logistic equation. However, the real dynamics of human population and consumption are not represented by this equation or its variants. We argue that Carrying Capacity should not be prescribed but should insteadbe dynamically derived a posteriori from the bidirectional coupling of Earth System submodels with the Human System model. We demonstrate this approach with a minimal model of Human–Nature interaction (HANDY). ▪  The Human System is a subsystem of the Earth System, with inputs (resources) from Earth System sources and outputs (waste, emissions) to Earth System sinks. ▪  The Human System is growing rapidly due to nonrenewable stocks of fossil fuels and water and threatens the sustainability of the Human System and to overwhelm the Earth System. ▪  Carrying Capacity has been prescribed a priori and using the logistic equation, which does not represent the dynamics of the Human System. ▪  Our new approach to human Carrying Capacity is derived from dynamically coupled Earth System–Human System models and can be used to estimate the sustainability of the Human System.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Novel Approach to Carrying Capacity: From a priori Prescription to a posteriori Derivation Based on Underlying Mechanisms and Dynamics\",\"authors\":\"Safa Mote, Jorge Rivas, E. Kalnay\",\"doi\":\"10.1146/annurev-earth-053018-060428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Human System is within the Earth System. They should be modeled bidirectionally coupled, as they are in reality. The Human System is rapidly expanding, mostly due to consumption of fossil fuels (approximately one million times faster than Nature accumulated them) and fossil water. This threatens not only other planetary subsystems but also the Human System itself. Carrying Capacity is an important tool to measure sustainability, but there is a widespread view that Carrying Capacity is not applicable to humans. Carrying Capacity has generally been prescribed a priori, mostly using the logistic equation. However, the real dynamics of human population and consumption are not represented by this equation or its variants. We argue that Carrying Capacity should not be prescribed but should insteadbe dynamically derived a posteriori from the bidirectional coupling of Earth System submodels with the Human System model. We demonstrate this approach with a minimal model of Human–Nature interaction (HANDY). ▪  The Human System is a subsystem of the Earth System, with inputs (resources) from Earth System sources and outputs (waste, emissions) to Earth System sinks. ▪  The Human System is growing rapidly due to nonrenewable stocks of fossil fuels and water and threatens the sustainability of the Human System and to overwhelm the Earth System. ▪  Carrying Capacity has been prescribed a priori and using the logistic equation, which does not represent the dynamics of the Human System. ▪  Our new approach to human Carrying Capacity is derived from dynamically coupled Earth System–Human System models and can be used to estimate the sustainability of the Human System.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-053018-060428\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-053018-060428","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8

摘要

人类系统在地球系统内。它们应该被建模成双向耦合的,就像它们在现实中一样。人类系统正在迅速扩张,主要是由于化石燃料的消耗(大约比大自然积累它们的速度快100万倍)和化石水。这不仅威胁到其他行星子系统,也威胁到人类系统本身。承载能力是衡量可持续发展的重要工具,但人们普遍认为承载能力不适用于人类。承载能力一般是一个先验的规定,主要是使用logistic方程。然而,人口和消费的真实动态并不是用这个方程或它的变体来表示的。我们认为承载能力不应该被规定,而应该从地球系统子模型与人类系统模型的双向耦合中动态地推导出来。我们用一个人类与自然交互的最小模型(HANDY)来证明这种方法。▪人类系统是地球系统的一个子系统,输入(资源)来自地球系统的源,输出(废物、排放)到地球系统的汇。由于不可再生的化石燃料和水的储备,人类系统正在迅速增长,威胁到人类系统的可持续性,并压倒地球系统。▪承载能力是先验地规定的,并使用逻辑方程,这并不代表人类系统的动态。▪我们对人类承载力的新方法来源于地球系统-人类系统动态耦合模型,可用于估计人类系统的可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Approach to Carrying Capacity: From a priori Prescription to a posteriori Derivation Based on Underlying Mechanisms and Dynamics
The Human System is within the Earth System. They should be modeled bidirectionally coupled, as they are in reality. The Human System is rapidly expanding, mostly due to consumption of fossil fuels (approximately one million times faster than Nature accumulated them) and fossil water. This threatens not only other planetary subsystems but also the Human System itself. Carrying Capacity is an important tool to measure sustainability, but there is a widespread view that Carrying Capacity is not applicable to humans. Carrying Capacity has generally been prescribed a priori, mostly using the logistic equation. However, the real dynamics of human population and consumption are not represented by this equation or its variants. We argue that Carrying Capacity should not be prescribed but should insteadbe dynamically derived a posteriori from the bidirectional coupling of Earth System submodels with the Human System model. We demonstrate this approach with a minimal model of Human–Nature interaction (HANDY). ▪  The Human System is a subsystem of the Earth System, with inputs (resources) from Earth System sources and outputs (waste, emissions) to Earth System sinks. ▪  The Human System is growing rapidly due to nonrenewable stocks of fossil fuels and water and threatens the sustainability of the Human System and to overwhelm the Earth System. ▪  Carrying Capacity has been prescribed a priori and using the logistic equation, which does not represent the dynamics of the Human System. ▪  Our new approach to human Carrying Capacity is derived from dynamically coupled Earth System–Human System models and can be used to estimate the sustainability of the Human System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
期刊最新文献
Autobiography: A 50-Year Quest for Understanding in Geoscience Toward a Natural History of Microbial Life The Composition of Earth's Lower Mantle Grain Size in Landscapes The Geologic History of Plants and Climate in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1