{"title":"生产假丝酵母生物质去除废水中的重金属","authors":"Gülşah Mersin, Ünsal Açıkel","doi":"10.23902/TRKJNAT.817451","DOIUrl":null,"url":null,"abstract":"Yeasts can accumulate heavy metals and grow in acidic media. In the present study, it was shown that Candida yeasts in an aqueous solution accumulate single Cu(II) and Ni(II) cations. The effect of heavy metal ions on the specific growth rate of biomasses and the uptake of metal ions during the growth phase was investigated in a batch system. Bioaccumulation efficiency decreased with increasing metal ion concentrations at constant sucrose concentrations. Both the specific growth rate and the biomass concentration were more inhibited in the bioaccumulation media containing Ni(II) ions singly as compared with the bioaccumulation media containing Cu(II) ions singly. The maximum specific growth rate and the saturation constant of yeasts were examined with a double-reciprocal form of Monod equation. Metal uptake performance decreased from 81.68% to 46.28% with increasing Ni(II) concentration from 25 mg/L to 250 mg/L for Candida lipolytica. Candida biomasses may be an alternative way of removal of heavy metals from wastewaters and may constitute a sample to produce new biomass. The study showed that Candida yeasts can be used as economical biomass due to their metal resistance and efficient production.","PeriodicalId":23163,"journal":{"name":"Trakya University Journal of Natural Sciences","volume":"167 1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PRODUCTION OF Candida BIOMASSES FOR HEAVY METAL REMOVAL FROM WASTEWATERS\",\"authors\":\"Gülşah Mersin, Ünsal Açıkel\",\"doi\":\"10.23902/TRKJNAT.817451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yeasts can accumulate heavy metals and grow in acidic media. In the present study, it was shown that Candida yeasts in an aqueous solution accumulate single Cu(II) and Ni(II) cations. The effect of heavy metal ions on the specific growth rate of biomasses and the uptake of metal ions during the growth phase was investigated in a batch system. Bioaccumulation efficiency decreased with increasing metal ion concentrations at constant sucrose concentrations. Both the specific growth rate and the biomass concentration were more inhibited in the bioaccumulation media containing Ni(II) ions singly as compared with the bioaccumulation media containing Cu(II) ions singly. The maximum specific growth rate and the saturation constant of yeasts were examined with a double-reciprocal form of Monod equation. Metal uptake performance decreased from 81.68% to 46.28% with increasing Ni(II) concentration from 25 mg/L to 250 mg/L for Candida lipolytica. Candida biomasses may be an alternative way of removal of heavy metals from wastewaters and may constitute a sample to produce new biomass. The study showed that Candida yeasts can be used as economical biomass due to their metal resistance and efficient production.\",\"PeriodicalId\":23163,\"journal\":{\"name\":\"Trakya University Journal of Natural Sciences\",\"volume\":\"167 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trakya University Journal of Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23902/TRKJNAT.817451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trakya University Journal of Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23902/TRKJNAT.817451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
PRODUCTION OF Candida BIOMASSES FOR HEAVY METAL REMOVAL FROM WASTEWATERS
Yeasts can accumulate heavy metals and grow in acidic media. In the present study, it was shown that Candida yeasts in an aqueous solution accumulate single Cu(II) and Ni(II) cations. The effect of heavy metal ions on the specific growth rate of biomasses and the uptake of metal ions during the growth phase was investigated in a batch system. Bioaccumulation efficiency decreased with increasing metal ion concentrations at constant sucrose concentrations. Both the specific growth rate and the biomass concentration were more inhibited in the bioaccumulation media containing Ni(II) ions singly as compared with the bioaccumulation media containing Cu(II) ions singly. The maximum specific growth rate and the saturation constant of yeasts were examined with a double-reciprocal form of Monod equation. Metal uptake performance decreased from 81.68% to 46.28% with increasing Ni(II) concentration from 25 mg/L to 250 mg/L for Candida lipolytica. Candida biomasses may be an alternative way of removal of heavy metals from wastewaters and may constitute a sample to produce new biomass. The study showed that Candida yeasts can be used as economical biomass due to their metal resistance and efficient production.