热冲击环境模拟及冲击响应谱影响规律

W. Wang, K. Huang, F. Zhao
{"title":"热冲击环境模拟及冲击响应谱影响规律","authors":"W. Wang, K. Huang, F. Zhao","doi":"10.1017/aer.2023.22","DOIUrl":null,"url":null,"abstract":"\n The high-frequency and high-amplitude pyroshock environment during the service of the spacecraft will cause damage to the equipment. Here, we develop a shock test device based on air cannon to simulate the above pyroshock environment. Then, a finite element model was established by explicit dynamic software ANSYS/LS-DYNA, and the simulation results were proved to be consistent with the test data. Based on the theory of Shock Response Spectrum (SRS), the effects of device parameters such as pressure, bullet material and resonant plate material on SRS were investigated via numerical simulation and shock test. This study shows that the amplitude of SRS increases with the increase of pressure in the range of 0.15–0.60 MPa, and the break frequency amplitude has a square root function relationship with the pressure. Additionally, the high-frequency amplitude of SRS was affected by the energy transfer efficiency of the bullet.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of pyroshock environment and effect rules of shock response spectrum\",\"authors\":\"W. Wang, K. Huang, F. Zhao\",\"doi\":\"10.1017/aer.2023.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The high-frequency and high-amplitude pyroshock environment during the service of the spacecraft will cause damage to the equipment. Here, we develop a shock test device based on air cannon to simulate the above pyroshock environment. Then, a finite element model was established by explicit dynamic software ANSYS/LS-DYNA, and the simulation results were proved to be consistent with the test data. Based on the theory of Shock Response Spectrum (SRS), the effects of device parameters such as pressure, bullet material and resonant plate material on SRS were investigated via numerical simulation and shock test. This study shows that the amplitude of SRS increases with the increase of pressure in the range of 0.15–0.60 MPa, and the break frequency amplitude has a square root function relationship with the pressure. Additionally, the high-frequency amplitude of SRS was affected by the energy transfer efficiency of the bullet.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2023.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航天器在服役过程中的高频、高振幅热冲击环境会对设备造成损伤。在此,我们研制了一种基于空气炮的冲击试验装置来模拟上述热冲击环境。然后利用显式动力学软件ANSYS/LS-DYNA建立有限元模型,仿真结果与试验数据吻合较好。基于冲击响应谱(SRS)理论,通过数值模拟和冲击试验研究了压力、弹体材料和谐振板材料等器件参数对SRS的影响。研究表明,在0.15 ~ 0.60 MPa范围内,SRS振幅随压力的增加而增大,断裂频率振幅与压力呈平方根函数关系。此外,弹体的能量传递效率也会影响SRS的高频振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of pyroshock environment and effect rules of shock response spectrum
The high-frequency and high-amplitude pyroshock environment during the service of the spacecraft will cause damage to the equipment. Here, we develop a shock test device based on air cannon to simulate the above pyroshock environment. Then, a finite element model was established by explicit dynamic software ANSYS/LS-DYNA, and the simulation results were proved to be consistent with the test data. Based on the theory of Shock Response Spectrum (SRS), the effects of device parameters such as pressure, bullet material and resonant plate material on SRS were investigated via numerical simulation and shock test. This study shows that the amplitude of SRS increases with the increase of pressure in the range of 0.15–0.60 MPa, and the break frequency amplitude has a square root function relationship with the pressure. Additionally, the high-frequency amplitude of SRS was affected by the energy transfer efficiency of the bullet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spray behaviour of hydro-treated ester fatty acids fuel made from used cooking oil at low injection pressures Visualising flight regimes using self-organising maps A folding wing system for guided ammunitions: mechanism design, manufacturing and real-time results with LQR, LQI, SMC and SOSMC Re-entry vehicle performance analysis under the control of lateral jet Spacecraft attitude control based on generalised dynamic inversion with adaptive neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1