电子注入对空心阴极辉光放电特性的影响

{"title":"电子注入对空心阴极辉光放电特性的影响","authors":"","doi":"10.26565/2312-4334-2021-2-13","DOIUrl":null,"url":null,"abstract":"The article presents the results of experimental studies of a glow discharge with a hollow cathode in helium and argon gases using an auxiliary discharge as an electron emitter. The authors proposed to make the electrode common for both discharges in the form of a cylindrical metal mesh. The advantage of this design is explained as follows. The connection between the discharges is carried out through holes in the grid with a geometric transparency of 0.2, which makes it possible not only to smoothly control the glow discharge current, but also to enhance the discharge current. Plasma is known to be one of the most efficient electron emitters; however, its use as a cathode in devices with a glow discharge at low gas pressures is complicated by the fact that a grid with small holes is required to separate the electron flow from the plasma, and it is impractical to use such a system in view of low mechanical strength of the grid Since the hollow cathode works effectively at low gas pressures, the release of an electron flux from the plasma of some auxiliary discharge is possible with much larger holes in the grid separating the plasma and the hollow cathode cavity. In this case, the grid can be made such that it can withstand sufficiently high thermal loads and can operate in typical discharge modes with a hollow cathode. The injection of electrons into the cathode cavity of the glow discharge changes the radial distribution of the glow intensity, the width of the cathode dark space, and other parameters of the plasma in the cathode cavity. The influence of electrons penetrating from the auxiliary discharge into the cathode cavity of the main discharge becomes significant when the current of these electrons is comparable to or exceeds the current of electrons leaving the grid cathode surface as a result of γ-processes. In parallel with the measurement of the optical and electrical characteristics of the hollow cathode glow discharge plasma, measurements of the electron concentration were carried out by the microwave sounding method. The entire current of the auxiliary discharge penetrates into the cavity of the main discharge; however, after acceleration in the cathode dark space, the electrons penetrating from the auxiliary discharge ionize gas atoms and noticeably increase the current of the main discharge. Additional ions formed due to the ionization of the gas by the injected electrons knock out new electrons from the cathode surface, which makes it possible to increase the discharge current.","PeriodicalId":78400,"journal":{"name":"La Ricerca scientifica. 2. ser., pt. 2: Rendiconti. Sezione B: Biologica","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Electron Injection on the Characteristics of a Hollow Cathode Glow Discharge\",\"authors\":\"\",\"doi\":\"10.26565/2312-4334-2021-2-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the results of experimental studies of a glow discharge with a hollow cathode in helium and argon gases using an auxiliary discharge as an electron emitter. The authors proposed to make the electrode common for both discharges in the form of a cylindrical metal mesh. The advantage of this design is explained as follows. The connection between the discharges is carried out through holes in the grid with a geometric transparency of 0.2, which makes it possible not only to smoothly control the glow discharge current, but also to enhance the discharge current. Plasma is known to be one of the most efficient electron emitters; however, its use as a cathode in devices with a glow discharge at low gas pressures is complicated by the fact that a grid with small holes is required to separate the electron flow from the plasma, and it is impractical to use such a system in view of low mechanical strength of the grid Since the hollow cathode works effectively at low gas pressures, the release of an electron flux from the plasma of some auxiliary discharge is possible with much larger holes in the grid separating the plasma and the hollow cathode cavity. In this case, the grid can be made such that it can withstand sufficiently high thermal loads and can operate in typical discharge modes with a hollow cathode. The injection of electrons into the cathode cavity of the glow discharge changes the radial distribution of the glow intensity, the width of the cathode dark space, and other parameters of the plasma in the cathode cavity. The influence of electrons penetrating from the auxiliary discharge into the cathode cavity of the main discharge becomes significant when the current of these electrons is comparable to or exceeds the current of electrons leaving the grid cathode surface as a result of γ-processes. In parallel with the measurement of the optical and electrical characteristics of the hollow cathode glow discharge plasma, measurements of the electron concentration were carried out by the microwave sounding method. The entire current of the auxiliary discharge penetrates into the cavity of the main discharge; however, after acceleration in the cathode dark space, the electrons penetrating from the auxiliary discharge ionize gas atoms and noticeably increase the current of the main discharge. Additional ions formed due to the ionization of the gas by the injected electrons knock out new electrons from the cathode surface, which makes it possible to increase the discharge current.\",\"PeriodicalId\":78400,\"journal\":{\"name\":\"La Ricerca scientifica. 2. ser., pt. 2: Rendiconti. Sezione B: Biologica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"La Ricerca scientifica. 2. ser., pt. 2: Rendiconti. Sezione B: Biologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2021-2-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"La Ricerca scientifica. 2. ser., pt. 2: Rendiconti. Sezione B: Biologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2021-2-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了在氦气和氩气中用辅助放电作电子发射器的空心阴极辉光放电的实验研究结果。作者建议将电极以圆柱形金属网的形式用于两种放电。本设计的优点如下:放电之间的连接是通过几何透明度为0.2的网格孔进行的,这不仅可以平滑地控制辉光放电电流,而且可以增强放电电流。等离子体被认为是最有效的电子发射器之一;然而,它作为阴极在低气压辉光放电装置中的使用是复杂的,因为需要一个带有小孔的网格来将电子流与等离子体分开,而且考虑到网格的低机械强度,使用这样一个系统是不切实际的。在分隔等离子体和空心阴极腔的栅格上有更大的空穴,就有可能从辅助放电的等离子体中释放出电子通量。在这种情况下,可以使电网能够承受足够高的热负荷,并且可以在典型的空心阴极放电模式下运行。辉光放电将电子注入阴极腔内,改变了阴极腔内辉光强度的径向分布、阴极暗空间的宽度以及等离子体的其他参数。当从辅助放电穿透到主放电阴极腔的电子的电流相当于或超过由于γ-过程而离开栅极阴极表面的电子的电流时,这些电子的影响变得显著。在测量空心阴极辉光放电等离子体的光学和电学特性的同时,用微波测深法测量了电子浓度。辅助放电的全部电流贯穿到主放电腔内;然而,在阴极暗空间加速后,从辅助放电穿透的电子使气体原子电离,使主放电电流明显增大。由于注入的电子使气体电离而形成的额外离子从阴极表面敲出新的电子,这使得增加放电电流成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Electron Injection on the Characteristics of a Hollow Cathode Glow Discharge
The article presents the results of experimental studies of a glow discharge with a hollow cathode in helium and argon gases using an auxiliary discharge as an electron emitter. The authors proposed to make the electrode common for both discharges in the form of a cylindrical metal mesh. The advantage of this design is explained as follows. The connection between the discharges is carried out through holes in the grid with a geometric transparency of 0.2, which makes it possible not only to smoothly control the glow discharge current, but also to enhance the discharge current. Plasma is known to be one of the most efficient electron emitters; however, its use as a cathode in devices with a glow discharge at low gas pressures is complicated by the fact that a grid with small holes is required to separate the electron flow from the plasma, and it is impractical to use such a system in view of low mechanical strength of the grid Since the hollow cathode works effectively at low gas pressures, the release of an electron flux from the plasma of some auxiliary discharge is possible with much larger holes in the grid separating the plasma and the hollow cathode cavity. In this case, the grid can be made such that it can withstand sufficiently high thermal loads and can operate in typical discharge modes with a hollow cathode. The injection of electrons into the cathode cavity of the glow discharge changes the radial distribution of the glow intensity, the width of the cathode dark space, and other parameters of the plasma in the cathode cavity. The influence of electrons penetrating from the auxiliary discharge into the cathode cavity of the main discharge becomes significant when the current of these electrons is comparable to or exceeds the current of electrons leaving the grid cathode surface as a result of γ-processes. In parallel with the measurement of the optical and electrical characteristics of the hollow cathode glow discharge plasma, measurements of the electron concentration were carried out by the microwave sounding method. The entire current of the auxiliary discharge penetrates into the cavity of the main discharge; however, after acceleration in the cathode dark space, the electrons penetrating from the auxiliary discharge ionize gas atoms and noticeably increase the current of the main discharge. Additional ions formed due to the ionization of the gas by the injected electrons knock out new electrons from the cathode surface, which makes it possible to increase the discharge current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Luminescence Characteristics and Energy Transfer of Tm3+-Doped Calcium Fluoroborate Glasses for Fiber Amplifiers Investigation of Laser Material Potential in Lead Tungsten Tellurite Glasses The Growth of Capture Fisheries in Pamekasan Regency, Madura Island Effect of a Depression Levels using the DEMATEL Method Krishnagiri District, Tamil Nadu, Groundwater Quality Status in relation to MCDM System Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1