眼底图像中糖尿病视网膜病变微动脉瘤的自动检测

W. Zhou, Chengdong Wu, Dali Chen, Zhenzhu Wang, Yugen Yi, Wenyou Du
{"title":"眼底图像中糖尿病视网膜病变微动脉瘤的自动检测","authors":"W. Zhou, Chengdong Wu, Dali Chen, Zhenzhu Wang, Yugen Yi, Wenyou Du","doi":"10.1109/CCDC.2017.7978534","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a serious diabetic complication, and Microaneurysm (MA) is the earliest lesion in diabetic retinopathy, so early MA detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose the Joint Dynamic Sparse Representation (JDSR) algorithm with multiple-channel multiple-feature dictionaries. Candidates for MA are first extracted as small image blocks; then we develop the multiple-channel multiple-feature dictionaries for candidate representation. Next, sparse coefficient can be obtained by the proposed JDSR algorithm which can be used for classification. Additionally, in order to form an optimal dictionary, the group sparsity dictionary selection method is also introduced. We evaluate our algorithm by comparing it with other state-of-the-art algorithms. Extensive experiment results on ROC database demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":6588,"journal":{"name":"2017 29th Chinese Control And Decision Conference (CCDC)","volume":"167 2 Suppl 1","pages":"7453-7458"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic microaneurysm detection of diabetic retinopathy in fundus images\",\"authors\":\"W. Zhou, Chengdong Wu, Dali Chen, Zhenzhu Wang, Yugen Yi, Wenyou Du\",\"doi\":\"10.1109/CCDC.2017.7978534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a serious diabetic complication, and Microaneurysm (MA) is the earliest lesion in diabetic retinopathy, so early MA detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose the Joint Dynamic Sparse Representation (JDSR) algorithm with multiple-channel multiple-feature dictionaries. Candidates for MA are first extracted as small image blocks; then we develop the multiple-channel multiple-feature dictionaries for candidate representation. Next, sparse coefficient can be obtained by the proposed JDSR algorithm which can be used for classification. Additionally, in order to form an optimal dictionary, the group sparsity dictionary selection method is also introduced. We evaluate our algorithm by comparing it with other state-of-the-art algorithms. Extensive experiment results on ROC database demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":6588,\"journal\":{\"name\":\"2017 29th Chinese Control And Decision Conference (CCDC)\",\"volume\":\"167 2 Suppl 1\",\"pages\":\"7453-7458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2017.7978534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2017.7978534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

糖尿病视网膜病变(DR)是一种严重的糖尿病并发症,而微动脉瘤(MA)是糖尿病视网膜病变中最早的病变,因此早期检测到微动脉瘤在糖尿病视网膜病变的诊断中起着至关重要的作用。本文提出了基于多通道多特征字典的联合动态稀疏表示(JDSR)算法。首先将候选图像提取为小图像块;然后,我们开发了用于候选表示的多通道多特征字典。其次,利用本文提出的JDSR算法得到稀疏系数,用于分类。此外,为了形成最优字典,还引入了组稀疏字典选择方法。我们通过与其他最先进的算法进行比较来评估我们的算法。在ROC数据库上的大量实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic microaneurysm detection of diabetic retinopathy in fundus images
Diabetic retinopathy (DR) is a serious diabetic complication, and Microaneurysm (MA) is the earliest lesion in diabetic retinopathy, so early MA detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose the Joint Dynamic Sparse Representation (JDSR) algorithm with multiple-channel multiple-feature dictionaries. Candidates for MA are first extracted as small image blocks; then we develop the multiple-channel multiple-feature dictionaries for candidate representation. Next, sparse coefficient can be obtained by the proposed JDSR algorithm which can be used for classification. Additionally, in order to form an optimal dictionary, the group sparsity dictionary selection method is also introduced. We evaluate our algorithm by comparing it with other state-of-the-art algorithms. Extensive experiment results on ROC database demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UPQC Harmonic Detection Algorithm Based on Improved p-q Theory and Design of Low-Pass Filter Online parameters updating method for least squares support vector machine using Unscented Kalman filter Quadratic stabilization and L2 gain analysis of switched affine systems 3PL inventory pledge decision analysis under the unified credit logistics model Design and implementation of LiDAR navigation system based on triangulation measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1