Seoung Wug Oh, M. S. Brown, M. Pollefeys, Seon Joo Kim
{"title":"用日常数码相机自己做高光谱成像","authors":"Seoung Wug Oh, M. S. Brown, M. Pollefeys, Seon Joo Kim","doi":"10.1109/CVPR.2016.270","DOIUrl":null,"url":null,"abstract":"Capturing hyperspectral images requires expensive and specialized hardware that is not readily accessible to most users. Digital cameras, on the other hand, are significantly cheaper in comparison and can be easily purchased and used. In this paper, we present a framework for reconstructing hyperspectral images by using multiple consumer-level digital cameras. Our approach works by exploiting the different spectral sensitivities of different camera sensors. In particular, due to the differences in spectral sensitivities of the cameras, different cameras yield different RGB measurements for the same spectral signal. We introduce an algorithm that is able to combine and convert these different RGB measurements into a single hyperspectral image for both indoor and outdoor scenes. This camera-based approach allows hyperspectral imaging at a fraction of the cost of most existing hyperspectral hardware. We validate the accuracy of our reconstruction against ground truth hyperspectral images (using both synthetic and real cases) and show its usage on relighting applications.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"96 3 1","pages":"2461-2469"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Do It Yourself Hyperspectral Imaging with Everyday Digital Cameras\",\"authors\":\"Seoung Wug Oh, M. S. Brown, M. Pollefeys, Seon Joo Kim\",\"doi\":\"10.1109/CVPR.2016.270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing hyperspectral images requires expensive and specialized hardware that is not readily accessible to most users. Digital cameras, on the other hand, are significantly cheaper in comparison and can be easily purchased and used. In this paper, we present a framework for reconstructing hyperspectral images by using multiple consumer-level digital cameras. Our approach works by exploiting the different spectral sensitivities of different camera sensors. In particular, due to the differences in spectral sensitivities of the cameras, different cameras yield different RGB measurements for the same spectral signal. We introduce an algorithm that is able to combine and convert these different RGB measurements into a single hyperspectral image for both indoor and outdoor scenes. This camera-based approach allows hyperspectral imaging at a fraction of the cost of most existing hyperspectral hardware. We validate the accuracy of our reconstruction against ground truth hyperspectral images (using both synthetic and real cases) and show its usage on relighting applications.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"96 3 1\",\"pages\":\"2461-2469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Do It Yourself Hyperspectral Imaging with Everyday Digital Cameras
Capturing hyperspectral images requires expensive and specialized hardware that is not readily accessible to most users. Digital cameras, on the other hand, are significantly cheaper in comparison and can be easily purchased and used. In this paper, we present a framework for reconstructing hyperspectral images by using multiple consumer-level digital cameras. Our approach works by exploiting the different spectral sensitivities of different camera sensors. In particular, due to the differences in spectral sensitivities of the cameras, different cameras yield different RGB measurements for the same spectral signal. We introduce an algorithm that is able to combine and convert these different RGB measurements into a single hyperspectral image for both indoor and outdoor scenes. This camera-based approach allows hyperspectral imaging at a fraction of the cost of most existing hyperspectral hardware. We validate the accuracy of our reconstruction against ground truth hyperspectral images (using both synthetic and real cases) and show its usage on relighting applications.