{"title":"信息检索的统计语言模型:综述","authors":"ChengXiang Zhai","doi":"10.1561/1500000008","DOIUrl":null,"url":null,"abstract":"Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. The purpose of this survey is to systematically and critically review the existing work in applying statistical language models to information retrieval, summarize their contributions, and point out outstanding challenges.","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"79 1","pages":"137-213"},"PeriodicalIF":8.3000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"348","resultStr":"{\"title\":\"Statistical Language Models for Information Retrieval: A Critical Review\",\"authors\":\"ChengXiang Zhai\",\"doi\":\"10.1561/1500000008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. The purpose of this survey is to systematically and critically review the existing work in applying statistical language models to information retrieval, summarize their contributions, and point out outstanding challenges.\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"79 1\",\"pages\":\"137-213\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2008-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"348\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000008\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000008","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Statistical Language Models for Information Retrieval: A Critical Review
Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. The purpose of this survey is to systematically and critically review the existing work in applying statistical language models to information retrieval, summarize their contributions, and point out outstanding challenges.
期刊介绍:
The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field.
Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.