基于滑动窗口模式识别的气动混合动力发动机能量管理策略

A. Ivanco, G. Colin, Y. Chamaillard, A. Charlet, P. Higelin
{"title":"基于滑动窗口模式识别的气动混合动力发动机能量管理策略","authors":"A. Ivanco, G. Colin, Y. Chamaillard, A. Charlet, P. Higelin","doi":"10.2516/OGST/2009045","DOIUrl":null,"url":null,"abstract":"This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized. Different energy management strategies are proposed in this paper. The first is called Causal Strategy (CS) and implements a rule-based control technique. The second strategy, called Constant Penalty Coefficient (CPC), is based on the minimization of equivalent consumption, where the use of each energy source is formulated in a comparative unit. The balance between the consumption of different energy sources (chemical or pneumatic) is achieved by the introduction of an equivalence factor. The third strategy is called Variable Penalty Coefficient (VPC). In fact, it is beneficial to consider the equivalence coefficient as variable within the amount of pneumatic energy stored in the air-tank i.e. state of charge, because the choice of propulsion mode should be different if the tank is full or empty. In this case, the penalty coefficient appears as a non linear function of the air-tank state of charge. Another way to adapt the penalty coefficient is to recognize a reference pattern during the driving cycle. The coefficient value can then be changed according to an optimized value found for each of the reference cycles. This strategy is called Driving Pattern Recognition (DPR). It involves a technique of sliding window pattern recognition. The concept is to convert the whole driving cycle into smaller pieces to which the equivalence factor can be appropriately adapted. This strategy is based on the assumption that the current driving situation does not change rapidly and thus the pattern is likely to continue into the near future. The identification window size is a parameter which has to be adjusted to attain the maximum of identification success over the reference cycle. We propose to define reference patterns as statistical models. The pattern recognition method is based on a correlation function. To improve analysis, all the results obtained with different energy management strategies are compared with a Dynamic Programming approach (DP) considered as the optimal solution. Results show that about 40% of fuel saving can be achieved by DP. The VPC and DPR strategies give better results than the CPC strategy, not so far from the results obtained with DP.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition\",\"authors\":\"A. Ivanco, G. Colin, Y. Chamaillard, A. Charlet, P. Higelin\",\"doi\":\"10.2516/OGST/2009045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized. Different energy management strategies are proposed in this paper. The first is called Causal Strategy (CS) and implements a rule-based control technique. The second strategy, called Constant Penalty Coefficient (CPC), is based on the minimization of equivalent consumption, where the use of each energy source is formulated in a comparative unit. The balance between the consumption of different energy sources (chemical or pneumatic) is achieved by the introduction of an equivalence factor. The third strategy is called Variable Penalty Coefficient (VPC). In fact, it is beneficial to consider the equivalence coefficient as variable within the amount of pneumatic energy stored in the air-tank i.e. state of charge, because the choice of propulsion mode should be different if the tank is full or empty. In this case, the penalty coefficient appears as a non linear function of the air-tank state of charge. Another way to adapt the penalty coefficient is to recognize a reference pattern during the driving cycle. The coefficient value can then be changed according to an optimized value found for each of the reference cycles. This strategy is called Driving Pattern Recognition (DPR). It involves a technique of sliding window pattern recognition. The concept is to convert the whole driving cycle into smaller pieces to which the equivalence factor can be appropriately adapted. This strategy is based on the assumption that the current driving situation does not change rapidly and thus the pattern is likely to continue into the near future. The identification window size is a parameter which has to be adjusted to attain the maximum of identification success over the reference cycle. We propose to define reference patterns as statistical models. The pattern recognition method is based on a correlation function. To improve analysis, all the results obtained with different energy management strategies are compared with a Dynamic Programming approach (DP) considered as the optimal solution. Results show that about 40% of fuel saving can be achieved by DP. The VPC and DPR strategies give better results than the CPC strategy, not so far from the results obtained with DP.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2009045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种新的混合动力气动发动机概念的能量管理策略,该概念的具体配置是混合动力不是车辆而是发动机本身。本文提出了不同的能源管理策略。第一种是因果策略(CS),采用基于规则的控制技术。第二个战略称为恒定惩罚系数(CPC),其基础是尽量减少等效消耗,其中每种能源的使用都以比较单位表示。不同能源(化学或气动)的消耗之间的平衡是通过引入等效系数来实现的。第三种策略称为可变惩罚系数(VPC)。实际上,考虑等效系数在储气罐中储存的气动能量即充能状态范围内的变量是有益的,因为在储气罐满或空时,推进方式的选择应该是不同的。在这种情况下,惩罚系数表现为空气罐充电状态的非线性函数。另一种调整处罚系数的方法是在驾驶循环中识别一个参考模式。然后,系数值可以根据为每个参考循环找到的优化值进行更改。这种策略被称为驾驶模式识别(DPR)。它涉及到滑动窗口模式识别技术。其概念是将整个驾驶周期转换成更小的部分,等效系数可以适当地适应。这一策略是基于这样的假设,即当前的驾驶情况不会迅速改变,因此这种模式可能会持续到不久的将来。识别窗口大小是一个必须调整的参数,以在参考周期内获得最大的识别成功。我们建议将参考模式定义为统计模型。模式识别方法是基于一个相关函数。为了改进分析,将不同能量管理策略得到的所有结果与动态规划方法(DP)作为最优解进行了比较。结果表明,采用DP可实现约40%的节油效果。VPC和DPR策略比CPC策略的效果更好,与DP的结果相差不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition
This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized. Different energy management strategies are proposed in this paper. The first is called Causal Strategy (CS) and implements a rule-based control technique. The second strategy, called Constant Penalty Coefficient (CPC), is based on the minimization of equivalent consumption, where the use of each energy source is formulated in a comparative unit. The balance between the consumption of different energy sources (chemical or pneumatic) is achieved by the introduction of an equivalence factor. The third strategy is called Variable Penalty Coefficient (VPC). In fact, it is beneficial to consider the equivalence coefficient as variable within the amount of pneumatic energy stored in the air-tank i.e. state of charge, because the choice of propulsion mode should be different if the tank is full or empty. In this case, the penalty coefficient appears as a non linear function of the air-tank state of charge. Another way to adapt the penalty coefficient is to recognize a reference pattern during the driving cycle. The coefficient value can then be changed according to an optimized value found for each of the reference cycles. This strategy is called Driving Pattern Recognition (DPR). It involves a technique of sliding window pattern recognition. The concept is to convert the whole driving cycle into smaller pieces to which the equivalence factor can be appropriately adapted. This strategy is based on the assumption that the current driving situation does not change rapidly and thus the pattern is likely to continue into the near future. The identification window size is a parameter which has to be adjusted to attain the maximum of identification success over the reference cycle. We propose to define reference patterns as statistical models. The pattern recognition method is based on a correlation function. To improve analysis, all the results obtained with different energy management strategies are compared with a Dynamic Programming approach (DP) considered as the optimal solution. Results show that about 40% of fuel saving can be achieved by DP. The VPC and DPR strategies give better results than the CPC strategy, not so far from the results obtained with DP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of geomechanical effects during SAGD process in a meander belt Flow Simulation Using Local Grid Refinements to Model Laminated Reservoirs Correlating Stochastically Distributed Reservoir Heterogeneities with Steam-Assisted Gravity Drainage Production Efficient estimation of hydrolyzed polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1