基于深度学习方法的智慧村-智慧经济的潜在分类

Runanto Runanto, Muhammad Fahmi Mislahudin, Fauzan Azmi Alfiansyah, Maudy Khairunnisa Maisun Taqiyyah, E. T. Tosida
{"title":"基于深度学习方法的智慧村-智慧经济的潜在分类","authors":"Runanto Runanto, Muhammad Fahmi Mislahudin, Fauzan Azmi Alfiansyah, Maudy Khairunnisa Maisun Taqiyyah, E. T. Tosida","doi":"10.46336/ijqrm.v2i3.147","DOIUrl":null,"url":null,"abstract":"Development gap in the city and village is still happening on Indonesia. It happened because of the massive urbanization factors. Poverty in the Indonesian villages are relatively higher than on the urbans. In order to reach the maximal city development, Ministry of Village, Development of Disadvantaged Regions and Transmigration of Indonesia created a sustainable village development program namely Village’s Sustainable Development Goals (SDGs) and optimized the village potential data. This study aimed to design the smart village – smart economy classification system by using deep learning methods on village potential data on Indonesia at 2020. The method used in this study is data mining processes namely KDD (Knowledge Discovery and Data mining). The result in this study showed the best models were obtained which consisting of 2 hidden layers and each layer is 128, 128 layers which using target class from the process of calculating the score is able to reach 94.93% of the accuracy from the training process and 96% on the testing process and succeeded to classify the potentials of smart village – smart economy.","PeriodicalId":14309,"journal":{"name":"International Journal of Quantitative Research and Modeling","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Potential classification of Smart Village – Smart Economy with Deep Learning methods\",\"authors\":\"Runanto Runanto, Muhammad Fahmi Mislahudin, Fauzan Azmi Alfiansyah, Maudy Khairunnisa Maisun Taqiyyah, E. T. Tosida\",\"doi\":\"10.46336/ijqrm.v2i3.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development gap in the city and village is still happening on Indonesia. It happened because of the massive urbanization factors. Poverty in the Indonesian villages are relatively higher than on the urbans. In order to reach the maximal city development, Ministry of Village, Development of Disadvantaged Regions and Transmigration of Indonesia created a sustainable village development program namely Village’s Sustainable Development Goals (SDGs) and optimized the village potential data. This study aimed to design the smart village – smart economy classification system by using deep learning methods on village potential data on Indonesia at 2020. The method used in this study is data mining processes namely KDD (Knowledge Discovery and Data mining). The result in this study showed the best models were obtained which consisting of 2 hidden layers and each layer is 128, 128 layers which using target class from the process of calculating the score is able to reach 94.93% of the accuracy from the training process and 96% on the testing process and succeeded to classify the potentials of smart village – smart economy.\",\"PeriodicalId\":14309,\"journal\":{\"name\":\"International Journal of Quantitative Research and Modeling\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantitative Research and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46336/ijqrm.v2i3.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantitative Research and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46336/ijqrm.v2i3.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印尼的城乡发展差距仍然存在。它的发生是因为大规模的城市化因素。印度尼西亚农村的贫困率相对高于城市。为了最大限度地实现城市发展,印度尼西亚农村、弱势地区发展和移民部制定了可持续的村庄发展计划,即村庄可持续发展目标(sustainable development Goals, SDGs),并优化了村庄潜力数据。本研究旨在利用深度学习方法对印度尼西亚2020年的村庄潜力数据进行智能村庄-智能经济分类系统的设计。本研究使用的方法是数据挖掘过程,即KDD(知识发现和数据挖掘)。研究结果表明,得到的最佳模型由2个隐层组成,每层为128层,128层中使用目标类计算分数的准确率达到训练过程准确率的94.93%和测试过程准确率的96%,成功地对智慧村-智慧经济潜力进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential classification of Smart Village – Smart Economy with Deep Learning methods
Development gap in the city and village is still happening on Indonesia. It happened because of the massive urbanization factors. Poverty in the Indonesian villages are relatively higher than on the urbans. In order to reach the maximal city development, Ministry of Village, Development of Disadvantaged Regions and Transmigration of Indonesia created a sustainable village development program namely Village’s Sustainable Development Goals (SDGs) and optimized the village potential data. This study aimed to design the smart village – smart economy classification system by using deep learning methods on village potential data on Indonesia at 2020. The method used in this study is data mining processes namely KDD (Knowledge Discovery and Data mining). The result in this study showed the best models were obtained which consisting of 2 hidden layers and each layer is 128, 128 layers which using target class from the process of calculating the score is able to reach 94.93% of the accuracy from the training process and 96% on the testing process and succeeded to classify the potentials of smart village – smart economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk Measurement of Investment Portfolio Using Var and Cvar from The Top 10 Traded Stocks on the IDX Application of Structural Equations Modeling Partial Least Square at the Comparation of the Niveau of Responsibility From Cs and Digics Investment Portfolio Optimization In Infrastructure Stocks Using The Mean-VaR Risk Tolerance Model A Scoping Review of Green Supply Chain and Company Performance Application of Mathematical Model in Bioeconomic Analysis of Skipjack Fish in Pelabuhanratu, Sukabumi Regency, Jawa Barat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1