视频动作定位的层次自注意网络

Rizard Renanda Adhi Pramono, Yie-Tarng Chen, Wen-Hsien Fang
{"title":"视频动作定位的层次自注意网络","authors":"Rizard Renanda Adhi Pramono, Yie-Tarng Chen, Wen-Hsien Fang","doi":"10.1109/ICCV.2019.00015","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Hierarchical Self-Attention Network (HISAN) to generate spatial-temporal tubes for action localization in videos. The essence of HISAN is to combine the two-stream convolutional neural network (CNN) with hierarchical bidirectional self-attention mechanism, which comprises of two levels of bidirectional self-attention to efficaciously capture both of the long-term temporal dependency information and spatial context information to render more precise action localization. Also, a sequence rescoring (SR) algorithm is employed to resolve the dilemma of inconsistent detection scores incurred by occlusion or background clutter. Moreover, a new fusion scheme is invoked, which integrates not only the appearance and motion information from the two-stream network, but also the motion saliency to mitigate the effect of camera motion. Simulations reveal that the new approach achieves competitive performance as the state-of-the-art works in terms of action localization and recognition accuracy on the widespread UCF101-24 and J-HMDB datasets.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"7 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Hierarchical Self-Attention Network for Action Localization in Videos\",\"authors\":\"Rizard Renanda Adhi Pramono, Yie-Tarng Chen, Wen-Hsien Fang\",\"doi\":\"10.1109/ICCV.2019.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel Hierarchical Self-Attention Network (HISAN) to generate spatial-temporal tubes for action localization in videos. The essence of HISAN is to combine the two-stream convolutional neural network (CNN) with hierarchical bidirectional self-attention mechanism, which comprises of two levels of bidirectional self-attention to efficaciously capture both of the long-term temporal dependency information and spatial context information to render more precise action localization. Also, a sequence rescoring (SR) algorithm is employed to resolve the dilemma of inconsistent detection scores incurred by occlusion or background clutter. Moreover, a new fusion scheme is invoked, which integrates not only the appearance and motion information from the two-stream network, but also the motion saliency to mitigate the effect of camera motion. Simulations reveal that the new approach achieves competitive performance as the state-of-the-art works in terms of action localization and recognition accuracy on the widespread UCF101-24 and J-HMDB datasets.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"7 1\",\"pages\":\"61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提出了一种新的层次自注意网络(HISAN),用于生成视频动作定位的时空管。HISAN的本质是将两流卷积神经网络(CNN)与分层双向自注意机制相结合,该机制由两层双向自注意组成,有效地捕获长期时间依赖信息和空间上下文信息,从而实现更精确的动作定位。同时,采用序列重分(SR)算法解决了遮挡或背景杂波导致的检测分数不一致的困境。此外,还引入了一种新的融合方案,该方案不仅融合了两流网络的外观和运动信息,而且还结合了运动显著性来减轻摄像机运动的影响。仿真结果表明,在UCF101-24和J-HMDB数据集上,新方法在动作定位和识别精度方面取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Self-Attention Network for Action Localization in Videos
This paper presents a novel Hierarchical Self-Attention Network (HISAN) to generate spatial-temporal tubes for action localization in videos. The essence of HISAN is to combine the two-stream convolutional neural network (CNN) with hierarchical bidirectional self-attention mechanism, which comprises of two levels of bidirectional self-attention to efficaciously capture both of the long-term temporal dependency information and spatial context information to render more precise action localization. Also, a sequence rescoring (SR) algorithm is employed to resolve the dilemma of inconsistent detection scores incurred by occlusion or background clutter. Moreover, a new fusion scheme is invoked, which integrates not only the appearance and motion information from the two-stream network, but also the motion saliency to mitigate the effect of camera motion. Simulations reveal that the new approach achieves competitive performance as the state-of-the-art works in terms of action localization and recognition accuracy on the widespread UCF101-24 and J-HMDB datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1