{"title":"渣精炼过程中加入钛对冶金级硅除硼的促进作用","authors":"Ya-qiong Li, Lifeng Zhang, Ligang Liu","doi":"10.1051/metal/2021085","DOIUrl":null,"url":null,"abstract":"The effects of titanium addition (0 wt.%, 0.2 wt.%, and 0.5 wt.%) on the boron removal from metallurgical-grade silicon during slag refining have been studied. According to the findings, the addition of Ti improved the removal of 92.5 wt.% B with 0.5 wt.% Ti addition compared to 79.4 wt.% B removal without Ti addition. Furthermore, acid leaching reduced excess Ti to 27 ppmw.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"54 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of boron removal from metallurgical-grade silicon by titanium addition during slag refining\",\"authors\":\"Ya-qiong Li, Lifeng Zhang, Ligang Liu\",\"doi\":\"10.1051/metal/2021085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of titanium addition (0 wt.%, 0.2 wt.%, and 0.5 wt.%) on the boron removal from metallurgical-grade silicon during slag refining have been studied. According to the findings, the addition of Ti improved the removal of 92.5 wt.% B with 0.5 wt.% Ti addition compared to 79.4 wt.% B removal without Ti addition. Furthermore, acid leaching reduced excess Ti to 27 ppmw.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021085\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021085","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Enhancement of boron removal from metallurgical-grade silicon by titanium addition during slag refining
The effects of titanium addition (0 wt.%, 0.2 wt.%, and 0.5 wt.%) on the boron removal from metallurgical-grade silicon during slag refining have been studied. According to the findings, the addition of Ti improved the removal of 92.5 wt.% B with 0.5 wt.% Ti addition compared to 79.4 wt.% B removal without Ti addition. Furthermore, acid leaching reduced excess Ti to 27 ppmw.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.