细菌分选酶家族蛋白的比较分析和祖先序列重建产生具有不同序列特异性的功能性祖先突变体

J. Valgardson, Sarah A. Struyvenberg, Zachary R. Sailer, I. Piper, Justin E. Svendsen, D. A. Johnson, Brandon A. Vogel, John M. Antos, M. Harms, J. Amacher
{"title":"细菌分选酶家族蛋白的比较分析和祖先序列重建产生具有不同序列特异性的功能性祖先突变体","authors":"J. Valgardson, Sarah A. Struyvenberg, Zachary R. Sailer, I. Piper, Justin E. Svendsen, D. A. Johnson, Brandon A. Vogel, John M. Antos, M. Harms, J. Amacher","doi":"10.3390/bacteria1020011","DOIUrl":null,"url":null,"abstract":"Gram-positive bacteria are some of the earliest known life forms, diverging from gram-negative bacteria 2 billion years ago. These organisms utilize sortase enzymes to attach proteins to their peptidoglycan cell wall, a structural feature that distinguishes the two types of bacteria. The transpeptidase activity of sortases make them an important tool in protein engineering applications, e.g., in sortase-mediated ligations or sortagging. However, due to relatively low catalytic efficiency, there are ongoing efforts to create better sortase variants for these uses. Here, we use bioinformatics tools, principal component analysis and ancestral sequence reconstruction, in combination with protein biochemistry, to analyze natural sequence variation in these enzymes. Principal component analysis on the sortase superfamily distinguishes previously described classes and identifies regions of relatively high sequence variation in structurally-conserved loops within each sortase family, including those near the active site. Using ancestral sequence reconstruction, we determined sequences of ancestral Staphylococcus and Streptococcus Class A sortase proteins. Enzyme assays revealed that the ancestral Streptococcus enzyme is relatively active and shares similar sequence variation with other Class A Streptococcus sortases. Taken together, we highlight how natural sequence variation can be utilized to investigate this important protein family, arguing that these and similar techniques may be used to discover or design sortases with increased catalytic efficiency and/or selectivity for sortase-mediated ligation experiments.","PeriodicalId":18020,"journal":{"name":"Lactic Acid Bacteria","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative Analysis and Ancestral Sequence Reconstruction of Bacterial Sortase Family Proteins Generates Functional Ancestral Mutants with Different Sequence Specificities\",\"authors\":\"J. Valgardson, Sarah A. Struyvenberg, Zachary R. Sailer, I. Piper, Justin E. Svendsen, D. A. Johnson, Brandon A. Vogel, John M. Antos, M. Harms, J. Amacher\",\"doi\":\"10.3390/bacteria1020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gram-positive bacteria are some of the earliest known life forms, diverging from gram-negative bacteria 2 billion years ago. These organisms utilize sortase enzymes to attach proteins to their peptidoglycan cell wall, a structural feature that distinguishes the two types of bacteria. The transpeptidase activity of sortases make them an important tool in protein engineering applications, e.g., in sortase-mediated ligations or sortagging. However, due to relatively low catalytic efficiency, there are ongoing efforts to create better sortase variants for these uses. Here, we use bioinformatics tools, principal component analysis and ancestral sequence reconstruction, in combination with protein biochemistry, to analyze natural sequence variation in these enzymes. Principal component analysis on the sortase superfamily distinguishes previously described classes and identifies regions of relatively high sequence variation in structurally-conserved loops within each sortase family, including those near the active site. Using ancestral sequence reconstruction, we determined sequences of ancestral Staphylococcus and Streptococcus Class A sortase proteins. Enzyme assays revealed that the ancestral Streptococcus enzyme is relatively active and shares similar sequence variation with other Class A Streptococcus sortases. Taken together, we highlight how natural sequence variation can be utilized to investigate this important protein family, arguing that these and similar techniques may be used to discover or design sortases with increased catalytic efficiency and/or selectivity for sortase-mediated ligation experiments.\",\"PeriodicalId\":18020,\"journal\":{\"name\":\"Lactic Acid Bacteria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lactic Acid Bacteria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bacteria1020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lactic Acid Bacteria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bacteria1020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

革兰氏阳性细菌是已知最早的生命形式之一,与20亿年前的革兰氏阴性细菌不同。这些生物利用分选酶将蛋白质附着在肽聚糖细胞壁上,这是区分这两种细菌的结构特征。排序酶的转肽酶活性使其成为蛋白质工程应用的重要工具,例如排序酶介导的连接或排序标记。然而,由于催化效率相对较低,人们正在努力为这些用途创造更好的分选酶变体。本文利用生物信息学工具、主成分分析和祖先序列重建,结合蛋白质生物化学,分析了这些酶的自然序列变异。对排序酶超家族的主成分分析区分了先前描述的类别,并确定了每个排序酶家族中结构保守环中相对较高的序列变异区域,包括活性位点附近的区域。通过祖先序列重建,我们确定了祖先葡萄球菌和链球菌A类分选酶蛋白的序列。酶分析结果表明,该祖先链球菌酶具有较强的活性,与其他A类链球菌酶具有相似的序列变异。综上所述,我们强调如何利用自然序列变异来研究这一重要的蛋白质家族,认为这些和类似的技术可以用来发现或设计具有更高催化效率和/或选择性的排序酶,用于排序酶介导的连接实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis and Ancestral Sequence Reconstruction of Bacterial Sortase Family Proteins Generates Functional Ancestral Mutants with Different Sequence Specificities
Gram-positive bacteria are some of the earliest known life forms, diverging from gram-negative bacteria 2 billion years ago. These organisms utilize sortase enzymes to attach proteins to their peptidoglycan cell wall, a structural feature that distinguishes the two types of bacteria. The transpeptidase activity of sortases make them an important tool in protein engineering applications, e.g., in sortase-mediated ligations or sortagging. However, due to relatively low catalytic efficiency, there are ongoing efforts to create better sortase variants for these uses. Here, we use bioinformatics tools, principal component analysis and ancestral sequence reconstruction, in combination with protein biochemistry, to analyze natural sequence variation in these enzymes. Principal component analysis on the sortase superfamily distinguishes previously described classes and identifies regions of relatively high sequence variation in structurally-conserved loops within each sortase family, including those near the active site. Using ancestral sequence reconstruction, we determined sequences of ancestral Staphylococcus and Streptococcus Class A sortase proteins. Enzyme assays revealed that the ancestral Streptococcus enzyme is relatively active and shares similar sequence variation with other Class A Streptococcus sortases. Taken together, we highlight how natural sequence variation can be utilized to investigate this important protein family, arguing that these and similar techniques may be used to discover or design sortases with increased catalytic efficiency and/or selectivity for sortase-mediated ligation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Curing Agents in the Adaptive Response of the Bioprotective Latilactobacillus curvatus CRL 705 from a Physiologic and Proteomic Perspective Enhancing Manganese Availability for Plants through Microbial Potential: A Sustainable Approach for Improving Soil Health and Food Security Geochemical and Microbiological Composition of Soils and Tailings Surrounding the Komsomolsk Tailings, Kemerovo Region, Russia Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production The Isolation, Screening, and Characterization of Polyhydroxyalkanoate-Producing Bacteria from Hypersaline Lakes in Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1