一种实时多光谱鲁棒行人检测算法

Vu Hiep Dao, Hieu Mac, Duc Tran
{"title":"一种实时多光谱鲁棒行人检测算法","authors":"Vu Hiep Dao, Hieu Mac, Duc Tran","doi":"10.1109/RIVF51545.2021.9642066","DOIUrl":null,"url":null,"abstract":"Low light conditions are known to create a notable challenge to the applicability of deep learning in a wide variety of computer vision applications. In this paper, we develop a detection method for real-time multispectral pedestrians that fuses color image (i.e., red-green-blue or RBG) with thermal image to provide a reliable object vision. Such combination is achieved using the confidence scores that are computed based on the illumination measure of a given input image. We evaluate the proposed algorithm on KAIST dataset. Such method is observed to give a 34.11% Log Average Miss Rate, operate in real-time, and thus, being ready to deploy in practice.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"18 4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Real-time Multispectral Algorithm for Robust Pedestrian Detection\",\"authors\":\"Vu Hiep Dao, Hieu Mac, Duc Tran\",\"doi\":\"10.1109/RIVF51545.2021.9642066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low light conditions are known to create a notable challenge to the applicability of deep learning in a wide variety of computer vision applications. In this paper, we develop a detection method for real-time multispectral pedestrians that fuses color image (i.e., red-green-blue or RBG) with thermal image to provide a reliable object vision. Such combination is achieved using the confidence scores that are computed based on the illumination measure of a given input image. We evaluate the proposed algorithm on KAIST dataset. Such method is observed to give a 34.11% Log Average Miss Rate, operate in real-time, and thus, being ready to deploy in practice.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"18 4 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,低光条件对深度学习在各种计算机视觉应用中的适用性构成了显著的挑战。在本文中,我们开发了一种实时多光谱行人检测方法,该方法将彩色图像(即红绿蓝或RBG)与热图像融合,以提供可靠的目标视觉。使用基于给定输入图像的照明度量计算的置信度分数来实现这种组合。我们在KAIST数据集上对该算法进行了评估。据观察,该方法的测井平均漏失率为34.11%,可以实时操作,因此可以在实践中部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Real-time Multispectral Algorithm for Robust Pedestrian Detection
Low light conditions are known to create a notable challenge to the applicability of deep learning in a wide variety of computer vision applications. In this paper, we develop a detection method for real-time multispectral pedestrians that fuses color image (i.e., red-green-blue or RBG) with thermal image to provide a reliable object vision. Such combination is achieved using the confidence scores that are computed based on the illumination measure of a given input image. We evaluate the proposed algorithm on KAIST dataset. Such method is observed to give a 34.11% Log Average Miss Rate, operate in real-time, and thus, being ready to deploy in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1