{"title":"ZnO纳米结构的电阻率Bloch-Gruneisen和小极化子传导模型","authors":"Reena Solanki, S. Goyal","doi":"10.1063/5.0061081","DOIUrl":null,"url":null,"abstract":"The temperature-dependent electrical resistivity (T) of ZnO nanostructures in metallic phase is analysed by Bloch-Gruneisen [BG] model and in semiconducting phase is analyzed by small polaron conduction (SPC) model. (T) shows semiconducting phase in low temperature regime, shows an absolute minimum near 180 K and increases linearly with T at high temperatures. The contributions to the resistivity by inherent acoustic phonons (ac) as well as high frequency optical phonons (op) were estimated using Bloch-Gruneisen [BG] model of resistivity. Estimated contribution to resistivity by considering both phonons i.e., ac and op and the zero limited resistivity are added with electronelectron interaction e-e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model at low temperatures below 180 K.","PeriodicalId":18837,"journal":{"name":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","volume":"96 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloch-Gruneisen and small polaron conduction model of electrical resistivity of ZnO nanostructures\",\"authors\":\"Reena Solanki, S. Goyal\",\"doi\":\"10.1063/5.0061081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature-dependent electrical resistivity (T) of ZnO nanostructures in metallic phase is analysed by Bloch-Gruneisen [BG] model and in semiconducting phase is analyzed by small polaron conduction (SPC) model. (T) shows semiconducting phase in low temperature regime, shows an absolute minimum near 180 K and increases linearly with T at high temperatures. The contributions to the resistivity by inherent acoustic phonons (ac) as well as high frequency optical phonons (op) were estimated using Bloch-Gruneisen [BG] model of resistivity. Estimated contribution to resistivity by considering both phonons i.e., ac and op and the zero limited resistivity are added with electronelectron interaction e-e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model at low temperatures below 180 K.\",\"PeriodicalId\":18837,\"journal\":{\"name\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"volume\":\"96 10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0061081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0061081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bloch-Gruneisen and small polaron conduction model of electrical resistivity of ZnO nanostructures
The temperature-dependent electrical resistivity (T) of ZnO nanostructures in metallic phase is analysed by Bloch-Gruneisen [BG] model and in semiconducting phase is analyzed by small polaron conduction (SPC) model. (T) shows semiconducting phase in low temperature regime, shows an absolute minimum near 180 K and increases linearly with T at high temperatures. The contributions to the resistivity by inherent acoustic phonons (ac) as well as high frequency optical phonons (op) were estimated using Bloch-Gruneisen [BG] model of resistivity. Estimated contribution to resistivity by considering both phonons i.e., ac and op and the zero limited resistivity are added with electronelectron interaction e-e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model at low temperatures below 180 K.