改进的SimpleC流体配准方案

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-19 DOI:10.3846/mma.2023.15482
M. Alahyane, A. Hakim, A. Laghrib, S. Raghay
{"title":"改进的SimpleC流体配准方案","authors":"M. Alahyane, A. Hakim, A. Laghrib, S. Raghay","doi":"10.3846/mma.2023.15482","DOIUrl":null,"url":null,"abstract":"The image registration is always a strongly ill-posed problem, a stable numerical approach is then desired to better approximate the deformation vectors. This paper introduces an efficient numerical implementation of the Navier Stokes equation in the fluid image registration context. Although fluid registration approaches have succeeded in handling large image deformations, the numerical results are sometimes inconsistent and unexpected. This is related, in fact, to the used numerical scheme which does not take into consideration the different properties of the continuous operators. To take into account these properties, we use a robust numerical scheme based on finite volume with pressure correction. This scheme, which is called by the Semi-Implicit Method for Pressure-Linked Equation-Consistent (SIMPLEC), is known for its stability and consistency in fluid dynamics context. The experimental results demonstrate that the proposed method is more efficient and stable, visually and quantitatively, compared to some classical registration methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved SimpleC Scheme for fluid Registration\",\"authors\":\"M. Alahyane, A. Hakim, A. Laghrib, S. Raghay\",\"doi\":\"10.3846/mma.2023.15482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image registration is always a strongly ill-posed problem, a stable numerical approach is then desired to better approximate the deformation vectors. This paper introduces an efficient numerical implementation of the Navier Stokes equation in the fluid image registration context. Although fluid registration approaches have succeeded in handling large image deformations, the numerical results are sometimes inconsistent and unexpected. This is related, in fact, to the used numerical scheme which does not take into consideration the different properties of the continuous operators. To take into account these properties, we use a robust numerical scheme based on finite volume with pressure correction. This scheme, which is called by the Semi-Implicit Method for Pressure-Linked Equation-Consistent (SIMPLEC), is known for its stability and consistency in fluid dynamics context. The experimental results demonstrate that the proposed method is more efficient and stable, visually and quantitatively, compared to some classical registration methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.15482\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.15482","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

图像配准一直是一个强不适定问题,因此需要一种稳定的数值方法来更好地逼近变形向量。本文介绍了流体图像配准中Navier - Stokes方程的一种高效数值实现方法。虽然流体配准方法已经成功地处理了大的图像变形,但数值结果有时是不一致的和意想不到的。事实上,这与所使用的数值格式有关,该格式没有考虑连续算子的不同性质。为了考虑到这些特性,我们使用了一个基于有限体积和压力校正的鲁棒数值方案。该方案被称为压力链接方程一致性的半隐式方法(SIMPLEC),以其在流体动力学中的稳定性和一致性而闻名。实验结果表明,与传统的配准方法相比,该方法具有更好的视觉效果和定量效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved SimpleC Scheme for fluid Registration
The image registration is always a strongly ill-posed problem, a stable numerical approach is then desired to better approximate the deformation vectors. This paper introduces an efficient numerical implementation of the Navier Stokes equation in the fluid image registration context. Although fluid registration approaches have succeeded in handling large image deformations, the numerical results are sometimes inconsistent and unexpected. This is related, in fact, to the used numerical scheme which does not take into consideration the different properties of the continuous operators. To take into account these properties, we use a robust numerical scheme based on finite volume with pressure correction. This scheme, which is called by the Semi-Implicit Method for Pressure-Linked Equation-Consistent (SIMPLEC), is known for its stability and consistency in fluid dynamics context. The experimental results demonstrate that the proposed method is more efficient and stable, visually and quantitatively, compared to some classical registration methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1