洞察再压缩布雷顿循环

Akif Eren Tatli, D. You, A. Ghanavati, H. Metghalchi
{"title":"洞察再压缩布雷顿循环","authors":"Akif Eren Tatli, D. You, A. Ghanavati, H. Metghalchi","doi":"10.1115/1.4062258","DOIUrl":null,"url":null,"abstract":"\n Recompression cycles have the potential to offer high performance when design parameters such as feasibility, performance, and compactness are considered. These cycles have recently gained attention especially in nuclear and concentrating solar power plants because of their high efficiency and environmentally friendly. A study has been done to investigate and learn more about recompression cycles. In this paper, a recompression Brayton cycle has been analyzed by performing parametric studies on the effectiveness of recuperators, pressure ratio, and split ratio as well as other input variables. To understand the relations between these factors and the performances of the cycle, argon was used as a working fluid because of its constant specific heat. The solution to temperatures at each state has been derived analytically, which is presented as a function of independent input variables. Thermal efficiency and exergy efficiency of this cycle have been determined in these analyses. The model indicates following results: entropy generation of recuperators is lower at a minimum split and decreases with increasing effectiveness. When the cycle is optimized for maximum efficiency it does not operate on maximum specific net work. The energy and exergy efficiencies of the cycle increase with increasing pressure ratio reaching a maximum value at the optimum pressure ratio. The effect of split ratio on temperature difference around recuperators shows that energy recovered at low temperature is higher at a minimum split which yields a higher efficiency in the cycle. The performance of the cycle is strongly affected by turbine inlet temperature.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight Into Recompression Brayton Cycle\",\"authors\":\"Akif Eren Tatli, D. You, A. Ghanavati, H. Metghalchi\",\"doi\":\"10.1115/1.4062258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recompression cycles have the potential to offer high performance when design parameters such as feasibility, performance, and compactness are considered. These cycles have recently gained attention especially in nuclear and concentrating solar power plants because of their high efficiency and environmentally friendly. A study has been done to investigate and learn more about recompression cycles. In this paper, a recompression Brayton cycle has been analyzed by performing parametric studies on the effectiveness of recuperators, pressure ratio, and split ratio as well as other input variables. To understand the relations between these factors and the performances of the cycle, argon was used as a working fluid because of its constant specific heat. The solution to temperatures at each state has been derived analytically, which is presented as a function of independent input variables. Thermal efficiency and exergy efficiency of this cycle have been determined in these analyses. The model indicates following results: entropy generation of recuperators is lower at a minimum split and decreases with increasing effectiveness. When the cycle is optimized for maximum efficiency it does not operate on maximum specific net work. The energy and exergy efficiencies of the cycle increase with increasing pressure ratio reaching a maximum value at the optimum pressure ratio. The effect of split ratio on temperature difference around recuperators shows that energy recovered at low temperature is higher at a minimum split which yields a higher efficiency in the cycle. The performance of the cycle is strongly affected by turbine inlet temperature.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当考虑可行性、性能和紧凑性等设计参数时,再压缩循环具有提供高性能的潜力。这些循环最近尤其在核能和聚光太阳能发电厂中受到关注,因为它们效率高且对环境友好。一项研究已经完成,以调查和了解更多关于再压缩循环。本文通过对回热器、压力比、分割比以及其他输入变量的有效性进行参数化研究,对再压缩布雷顿循环进行了分析。为了了解这些因素与循环性能之间的关系,由于氩气的比热恒定,因此使用氩气作为工作流体。每个状态下的温度解已被解析导出,它被表示为独立输入变量的函数。通过分析,确定了该循环的热效率和火用效率。模型结果表明:在最小劈裂时,回热器的熵产较低,熵产随效率的增加而减小。当循环被优化为最高效率时,它不会在最大的比网上运行。循环的能量效率和火用效率随压力比的增加而增加,在最佳压力比时达到最大值。劈裂比对回热器周围温差的影响表明,在最小劈裂时,低温下回收的能量更高,循环效率更高。涡轮进口温度对循环性能的影响很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insight Into Recompression Brayton Cycle
Recompression cycles have the potential to offer high performance when design parameters such as feasibility, performance, and compactness are considered. These cycles have recently gained attention especially in nuclear and concentrating solar power plants because of their high efficiency and environmentally friendly. A study has been done to investigate and learn more about recompression cycles. In this paper, a recompression Brayton cycle has been analyzed by performing parametric studies on the effectiveness of recuperators, pressure ratio, and split ratio as well as other input variables. To understand the relations between these factors and the performances of the cycle, argon was used as a working fluid because of its constant specific heat. The solution to temperatures at each state has been derived analytically, which is presented as a function of independent input variables. Thermal efficiency and exergy efficiency of this cycle have been determined in these analyses. The model indicates following results: entropy generation of recuperators is lower at a minimum split and decreases with increasing effectiveness. When the cycle is optimized for maximum efficiency it does not operate on maximum specific net work. The energy and exergy efficiencies of the cycle increase with increasing pressure ratio reaching a maximum value at the optimum pressure ratio. The effect of split ratio on temperature difference around recuperators shows that energy recovered at low temperature is higher at a minimum split which yields a higher efficiency in the cycle. The performance of the cycle is strongly affected by turbine inlet temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1