Иг. С. Голяк, Павел Вячеславович Бережанский, А Ю Седова, Т.А. Гутырчик, О. А. Небритова, А. Н. Морозов, Д.Р. Анфимов, И. Б. Винтайкин, А. А. Коноплева, П.П. Дёмкин, И. Л. Фуфурин
{"title":"用红外激光光谱学来诊断人类呼吸中的一些社会相关疾病","authors":"Иг. С. Голяк, Павел Вячеславович Бережанский, А Ю Седова, Т.А. Гутырчик, О. А. Небритова, А. Н. Морозов, Д.Р. Анфимов, И. Б. Винтайкин, А. А. Коноплева, П.П. Дёмкин, И. Л. Фуфурин","doi":"10.21883/os.2023.06.55917.109-23","DOIUrl":null,"url":null,"abstract":"The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type 1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL) was used. QCL emits in the wavelength range from 5.3 to 12.8 μm in a pulsed mode with a pulse width of 50 ns, a power of up to 150 mW, and a tuning step of 1 cm-1. The laser is optically coupled to an astigmatic gas cell of the Herriot type with an optical path length of 76 m. A difference was found in the intensity of selective lines of biomarker molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest neighbors (k-NN) and the random forest algorithm (RandomForest), the possibility of classifying volunteers by the infrared spectra of their exhaled air is shown. The use of dimensionality reduction methods (PCA and t-SNE) made it possible to increase the accuracy of disease classification up to 98% in terms of the accuracy metric.","PeriodicalId":24059,"journal":{"name":"Оптика и спектроскопия","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Применение машинного обучения для диагностики некоторых социально значимых заболеваний по выдыхаемому человеком воздуху методом инфракрасной лазерной спектроскопии\",\"authors\":\"Иг. С. Голяк, Павел Вячеславович Бережанский, А Ю Седова, Т.А. Гутырчик, О. А. Небритова, А. Н. Морозов, Д.Р. Анфимов, И. Б. Винтайкин, А. А. Коноплева, П.П. Дёмкин, И. Л. Фуфурин\",\"doi\":\"10.21883/os.2023.06.55917.109-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type 1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL) was used. QCL emits in the wavelength range from 5.3 to 12.8 μm in a pulsed mode with a pulse width of 50 ns, a power of up to 150 mW, and a tuning step of 1 cm-1. The laser is optically coupled to an astigmatic gas cell of the Herriot type with an optical path length of 76 m. A difference was found in the intensity of selective lines of biomarker molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest neighbors (k-NN) and the random forest algorithm (RandomForest), the possibility of classifying volunteers by the infrared spectra of their exhaled air is shown. The use of dimensionality reduction methods (PCA and t-SNE) made it possible to increase the accuracy of disease classification up to 98% in terms of the accuracy metric.\",\"PeriodicalId\":24059,\"journal\":{\"name\":\"Оптика и спектроскопия\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Оптика и спектроскопия\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21883/os.2023.06.55917.109-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Оптика и спектроскопия","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/os.2023.06.55917.109-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Применение машинного обучения для диагностики некоторых социально значимых заболеваний по выдыхаемому человеком воздуху методом инфракрасной лазерной спектроскопии
The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type 1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL) was used. QCL emits in the wavelength range from 5.3 to 12.8 μm in a pulsed mode with a pulse width of 50 ns, a power of up to 150 mW, and a tuning step of 1 cm-1. The laser is optically coupled to an astigmatic gas cell of the Herriot type with an optical path length of 76 m. A difference was found in the intensity of selective lines of biomarker molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest neighbors (k-NN) and the random forest algorithm (RandomForest), the possibility of classifying volunteers by the infrared spectra of their exhaled air is shown. The use of dimensionality reduction methods (PCA and t-SNE) made it possible to increase the accuracy of disease classification up to 98% in terms of the accuracy metric.