{"title":"经典和量子二元假设检验的工作特性","authors":"Catherine Medlock, A. Oppenheim","doi":"10.1561/2000000106","DOIUrl":null,"url":null,"abstract":"This monograph addresses operating characteristics for binary hypothesis testing in both classical and quantum settings and overcomplete quantum measurements for quantum binary state discrimination. We specifically explore decision and measurement operating characteristics defined as the tradeoff between probability of detection and probability of false alarm as parameters of the pre-decision operator and the binary decision rule are varied. In the classical case we consider in detail the Neyman-Pearson optimality of the operating characteristics when they are generated using threshold tests on a scalar score variable rather than threshold tests on the likelihood ratio. In the quantum setting, informationally overcomplete POVMs are explored to provide robust quantum binary state discrimination. We focus on equal trace rank one POVMs which can be specified by arrangements of points on a sphere that we refer to as an Etro sphere. Catherine A. Medlock and Alan V. Oppenheim (2021), “Operating Characteristics for Classical and Quantum Binary Hypothesis Testing”, Foundations and Trends® in Signal Processing: Vol. 15, No. 1, pp 1–120. DOI: 10.1561/2000000106. Full text available at: http://dx.doi.org/10.1561/2000000106","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"150 1","pages":"1-120"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Operating Characteristics for Classical and Quantum Binary Hypothesis Testing\",\"authors\":\"Catherine Medlock, A. Oppenheim\",\"doi\":\"10.1561/2000000106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This monograph addresses operating characteristics for binary hypothesis testing in both classical and quantum settings and overcomplete quantum measurements for quantum binary state discrimination. We specifically explore decision and measurement operating characteristics defined as the tradeoff between probability of detection and probability of false alarm as parameters of the pre-decision operator and the binary decision rule are varied. In the classical case we consider in detail the Neyman-Pearson optimality of the operating characteristics when they are generated using threshold tests on a scalar score variable rather than threshold tests on the likelihood ratio. In the quantum setting, informationally overcomplete POVMs are explored to provide robust quantum binary state discrimination. We focus on equal trace rank one POVMs which can be specified by arrangements of points on a sphere that we refer to as an Etro sphere. Catherine A. Medlock and Alan V. Oppenheim (2021), “Operating Characteristics for Classical and Quantum Binary Hypothesis Testing”, Foundations and Trends® in Signal Processing: Vol. 15, No. 1, pp 1–120. DOI: 10.1561/2000000106. Full text available at: http://dx.doi.org/10.1561/2000000106\",\"PeriodicalId\":12340,\"journal\":{\"name\":\"Found. Trends Signal Process.\",\"volume\":\"150 1\",\"pages\":\"1-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2000000106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本专著解决了二元假设检验在经典和量子设置和量子二元状态判别的过完备量子测量的操作特征。我们具体探讨了决策和测量操作特性,定义为在预决策算子和二元决策规则的参数变化时检测概率和虚警概率之间的权衡。在经典情况下,我们详细考虑了当使用标量分数变量的阈值测试而不是似然比的阈值测试生成操作特征时的内曼-皮尔逊最优性。在量子环境下,研究了信息过完备的povm,以提供鲁棒的量子二元态判别。我们关注相等的迹阶1 povm,它可以通过我们称之为埃特罗球的球体上点的排列来指定。Catherine A. Medlock和Alan V. Oppenheim(2021),“经典和量子二元假设检验的操作特性”,信号处理的基础和趋势®:第15卷,第1期,第1 - 120页。DOI: 10.1561 / 2000000106。全文可在:http://dx.doi.org/10.1561/2000000106
Operating Characteristics for Classical and Quantum Binary Hypothesis Testing
This monograph addresses operating characteristics for binary hypothesis testing in both classical and quantum settings and overcomplete quantum measurements for quantum binary state discrimination. We specifically explore decision and measurement operating characteristics defined as the tradeoff between probability of detection and probability of false alarm as parameters of the pre-decision operator and the binary decision rule are varied. In the classical case we consider in detail the Neyman-Pearson optimality of the operating characteristics when they are generated using threshold tests on a scalar score variable rather than threshold tests on the likelihood ratio. In the quantum setting, informationally overcomplete POVMs are explored to provide robust quantum binary state discrimination. We focus on equal trace rank one POVMs which can be specified by arrangements of points on a sphere that we refer to as an Etro sphere. Catherine A. Medlock and Alan V. Oppenheim (2021), “Operating Characteristics for Classical and Quantum Binary Hypothesis Testing”, Foundations and Trends® in Signal Processing: Vol. 15, No. 1, pp 1–120. DOI: 10.1561/2000000106. Full text available at: http://dx.doi.org/10.1561/2000000106