B. Șerban, O. Buiu, M. Bumbac, R. Marinescu, N. Dumbravescu, V. Avramescu, C. Cobianu, C. Nicolescu, M. Brezeanu, C. Radulescu, F. Comanescu
{"title":"三元氧化碳纳米角/TiO2/PVP纳米杂化物作为化学电阻湿度传感器的敏感层","authors":"B. Șerban, O. Buiu, M. Bumbac, R. Marinescu, N. Dumbravescu, V. Avramescu, C. Cobianu, C. Nicolescu, M. Brezeanu, C. Radulescu, F. Comanescu","doi":"10.3390/csac2021-10616","DOIUrl":null,"url":null,"abstract":"The relative humidity (RH) sensing response of a chemoresistive sensor using a novel ternary hybrid nanocomposite film as a sensing element is presented. The sensitive layer was obtained by employing the drop-casting technique for depositing a thin film of nanocomposite between the electrodes of an interdigitated (IDT) structure. The sensing support structure consists of an IDT dual-comb structure fabricated on a oSi-SiO2 substrate. The IDT comprises chromium, as an adhesion layer (10 nm thickness), and a gold layer (100 nm thickness). The sensing capability of a novel thin film based on a ternary hybrid made of oxidated carbon nanohorns–titanium dioxide–polyvinylpyrrolidone (CNHox/TiO2/PVP) nanocomposite was investigated by applying a direct current with known intensity between the two electrodes of the sensing structure, and measuring the resulting voltage difference, while varying the RH from 0% to 100% in a humid nitrogen atmosphere. The ternary hybrid-based thin film’s resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%. It was found that the performance of the new chemoresistive sensor is consistent with that of the capacitive commercial sensor used as a benchmark. Raman spectroscopy was used to provide information on the composition of the sensing layer and on potential interactions between constituents. Several sensing mechanisms were considered and discussed, based on the interaction of water molecules with each component of the ternary nanohybrid. The sensing results obtained lead to the conclusion that the synergic effect of the p-type semiconductor behavior of the CNHox and the PVP swelling process plays a pivotal role in the overall resistance decrease of the sensitive film.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ternary Oxidized Carbon Nanohorns/TiO2/PVP Nanohybrid as Sensitive Layer for Chemoresistive Humidity Sensor\",\"authors\":\"B. Șerban, O. Buiu, M. Bumbac, R. Marinescu, N. Dumbravescu, V. Avramescu, C. Cobianu, C. Nicolescu, M. Brezeanu, C. Radulescu, F. Comanescu\",\"doi\":\"10.3390/csac2021-10616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relative humidity (RH) sensing response of a chemoresistive sensor using a novel ternary hybrid nanocomposite film as a sensing element is presented. The sensitive layer was obtained by employing the drop-casting technique for depositing a thin film of nanocomposite between the electrodes of an interdigitated (IDT) structure. The sensing support structure consists of an IDT dual-comb structure fabricated on a oSi-SiO2 substrate. The IDT comprises chromium, as an adhesion layer (10 nm thickness), and a gold layer (100 nm thickness). The sensing capability of a novel thin film based on a ternary hybrid made of oxidated carbon nanohorns–titanium dioxide–polyvinylpyrrolidone (CNHox/TiO2/PVP) nanocomposite was investigated by applying a direct current with known intensity between the two electrodes of the sensing structure, and measuring the resulting voltage difference, while varying the RH from 0% to 100% in a humid nitrogen atmosphere. The ternary hybrid-based thin film’s resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%. It was found that the performance of the new chemoresistive sensor is consistent with that of the capacitive commercial sensor used as a benchmark. Raman spectroscopy was used to provide information on the composition of the sensing layer and on potential interactions between constituents. Several sensing mechanisms were considered and discussed, based on the interaction of water molecules with each component of the ternary nanohybrid. The sensing results obtained lead to the conclusion that the synergic effect of the p-type semiconductor behavior of the CNHox and the PVP swelling process plays a pivotal role in the overall resistance decrease of the sensitive film.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ternary Oxidized Carbon Nanohorns/TiO2/PVP Nanohybrid as Sensitive Layer for Chemoresistive Humidity Sensor
The relative humidity (RH) sensing response of a chemoresistive sensor using a novel ternary hybrid nanocomposite film as a sensing element is presented. The sensitive layer was obtained by employing the drop-casting technique for depositing a thin film of nanocomposite between the electrodes of an interdigitated (IDT) structure. The sensing support structure consists of an IDT dual-comb structure fabricated on a oSi-SiO2 substrate. The IDT comprises chromium, as an adhesion layer (10 nm thickness), and a gold layer (100 nm thickness). The sensing capability of a novel thin film based on a ternary hybrid made of oxidated carbon nanohorns–titanium dioxide–polyvinylpyrrolidone (CNHox/TiO2/PVP) nanocomposite was investigated by applying a direct current with known intensity between the two electrodes of the sensing structure, and measuring the resulting voltage difference, while varying the RH from 0% to 100% in a humid nitrogen atmosphere. The ternary hybrid-based thin film’s resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%. It was found that the performance of the new chemoresistive sensor is consistent with that of the capacitive commercial sensor used as a benchmark. Raman spectroscopy was used to provide information on the composition of the sensing layer and on potential interactions between constituents. Several sensing mechanisms were considered and discussed, based on the interaction of water molecules with each component of the ternary nanohybrid. The sensing results obtained lead to the conclusion that the synergic effect of the p-type semiconductor behavior of the CNHox and the PVP swelling process plays a pivotal role in the overall resistance decrease of the sensitive film.