{"title":"2.45 GHz电磁能量收集整流器设计比较研究","authors":"Sittilin Salleh, M. A. Zakariya, R. Lee","doi":"10.4236/EPE.2021.132006","DOIUrl":null,"url":null,"abstract":"Energy harvesting is a rapidly growing area in many scientific and engineering-related fields due to the demand for many applications. This paper focuses on the design and simulation of the voltage doubler rectifier circuit at 2.45 GHz operating frequency. The design of a rectifier is optimized based on the use of Schottky diode HSMS 286 B due to its low forward voltage at this frequency. 2 stages of the Schottky diode voltage doublers circuit are designed and simulated in this paper. The shunt capacitor and optimal load resistance are also introduced in the course to reduce signal loss. A multi-stage rectifier is used to produce maximum power conversion from AC to DC. The simulated results present that the maximum output voltage of 6.651 V with an input power of 25 dBm is produced, which presents a maximum power conversion efficiency of 73.13%, which applicable in small device applications.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparison Study of Rectifier Designs for 2.45 GHz EM Energy Harvesting\",\"authors\":\"Sittilin Salleh, M. A. Zakariya, R. Lee\",\"doi\":\"10.4236/EPE.2021.132006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy harvesting is a rapidly growing area in many scientific and engineering-related fields due to the demand for many applications. This paper focuses on the design and simulation of the voltage doubler rectifier circuit at 2.45 GHz operating frequency. The design of a rectifier is optimized based on the use of Schottky diode HSMS 286 B due to its low forward voltage at this frequency. 2 stages of the Schottky diode voltage doublers circuit are designed and simulated in this paper. The shunt capacitor and optimal load resistance are also introduced in the course to reduce signal loss. A multi-stage rectifier is used to produce maximum power conversion from AC to DC. The simulated results present that the maximum output voltage of 6.651 V with an input power of 25 dBm is produced, which presents a maximum power conversion efficiency of 73.13%, which applicable in small device applications.\",\"PeriodicalId\":62938,\"journal\":{\"name\":\"能源与动力工程(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源与动力工程(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/EPE.2021.132006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/EPE.2021.132006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison Study of Rectifier Designs for 2.45 GHz EM Energy Harvesting
Energy harvesting is a rapidly growing area in many scientific and engineering-related fields due to the demand for many applications. This paper focuses on the design and simulation of the voltage doubler rectifier circuit at 2.45 GHz operating frequency. The design of a rectifier is optimized based on the use of Schottky diode HSMS 286 B due to its low forward voltage at this frequency. 2 stages of the Schottky diode voltage doublers circuit are designed and simulated in this paper. The shunt capacitor and optimal load resistance are also introduced in the course to reduce signal loss. A multi-stage rectifier is used to produce maximum power conversion from AC to DC. The simulated results present that the maximum output voltage of 6.651 V with an input power of 25 dBm is produced, which presents a maximum power conversion efficiency of 73.13%, which applicable in small device applications.