N. Kurian, A. Sethi, Anil Reddy Konduru, A. Mahajan, S. Rane
{"title":"2021年关于深度学习癌症图像分析的最新进展","authors":"N. Kurian, A. Sethi, Anil Reddy Konduru, A. Mahajan, S. Rane","doi":"10.1002/widm.1410","DOIUrl":null,"url":null,"abstract":"Deep learning (DL)‐based interpretation of medical images has reached a critical juncture of expanding outside research projects into translational ones, and is ready to make its way to the clinics. Advances over the last decade in data availability, DL techniques, as well as computing capabilities have accelerated this journey. Through this journey, today we have a better understanding of the challenges to and pitfalls of wider adoption of DL into clinical care, which, according to us, should and will drive the advances in this field in the next few years. The most important among these challenges are the lack of an appropriately digitized environment within healthcare institutions, the lack of adequate open and representative datasets on which DL algorithms can be trained and tested, and the lack of robustness of widely used DL training algorithms to certain pervasive pathological characteristics of medical images and repositories. In this review, we provide an overview of the role of imaging in oncology, the different techniques that are shaping the way DL algorithms are being made ready for clinical use, and also the problems that DL techniques still need to address before DL can find a home in clinics. Finally, we also provide a summary of how DL can potentially drive the adoption of digital pathology, vendor neutral archives, and picture archival and communication systems. We caution that the respective researchers may find the coverage of their own fields to be at a high‐level. This is so by design as this format is meant to only introduce those looking in from outside of deep learning and medical research, respectively, to gain an appreciation for the main concerns and limitations of these two fields instead of telling them something new about their own.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"19 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A 2021 update on cancer image analytics with deep learning\",\"authors\":\"N. Kurian, A. Sethi, Anil Reddy Konduru, A. Mahajan, S. Rane\",\"doi\":\"10.1002/widm.1410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL)‐based interpretation of medical images has reached a critical juncture of expanding outside research projects into translational ones, and is ready to make its way to the clinics. Advances over the last decade in data availability, DL techniques, as well as computing capabilities have accelerated this journey. Through this journey, today we have a better understanding of the challenges to and pitfalls of wider adoption of DL into clinical care, which, according to us, should and will drive the advances in this field in the next few years. The most important among these challenges are the lack of an appropriately digitized environment within healthcare institutions, the lack of adequate open and representative datasets on which DL algorithms can be trained and tested, and the lack of robustness of widely used DL training algorithms to certain pervasive pathological characteristics of medical images and repositories. In this review, we provide an overview of the role of imaging in oncology, the different techniques that are shaping the way DL algorithms are being made ready for clinical use, and also the problems that DL techniques still need to address before DL can find a home in clinics. Finally, we also provide a summary of how DL can potentially drive the adoption of digital pathology, vendor neutral archives, and picture archival and communication systems. We caution that the respective researchers may find the coverage of their own fields to be at a high‐level. This is so by design as this format is meant to only introduce those looking in from outside of deep learning and medical research, respectively, to gain an appreciation for the main concerns and limitations of these two fields instead of telling them something new about their own.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1410\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1410","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A 2021 update on cancer image analytics with deep learning
Deep learning (DL)‐based interpretation of medical images has reached a critical juncture of expanding outside research projects into translational ones, and is ready to make its way to the clinics. Advances over the last decade in data availability, DL techniques, as well as computing capabilities have accelerated this journey. Through this journey, today we have a better understanding of the challenges to and pitfalls of wider adoption of DL into clinical care, which, according to us, should and will drive the advances in this field in the next few years. The most important among these challenges are the lack of an appropriately digitized environment within healthcare institutions, the lack of adequate open and representative datasets on which DL algorithms can be trained and tested, and the lack of robustness of widely used DL training algorithms to certain pervasive pathological characteristics of medical images and repositories. In this review, we provide an overview of the role of imaging in oncology, the different techniques that are shaping the way DL algorithms are being made ready for clinical use, and also the problems that DL techniques still need to address before DL can find a home in clinics. Finally, we also provide a summary of how DL can potentially drive the adoption of digital pathology, vendor neutral archives, and picture archival and communication systems. We caution that the respective researchers may find the coverage of their own fields to be at a high‐level. This is so by design as this format is meant to only introduce those looking in from outside of deep learning and medical research, respectively, to gain an appreciation for the main concerns and limitations of these two fields instead of telling them something new about their own.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.