48核IA-32消息传递处理器,采用45纳米CMOS的DVFS

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom, Fabric Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Salihundam, V. Erraguntla, M. Konow, Michael Riepen, G. Droege, Joerg Lindemann, M. Gries, T. Apel, K. Henriss, Tor Lund-Larsen, Sebastian Steibl, S. Borkar, V. De, R. V. D. Wijngaart, T. Mattson
{"title":"48核IA-32消息传递处理器,采用45纳米CMOS的DVFS","authors":"J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom, Fabric Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Salihundam, V. Erraguntla, M. Konow, Michael Riepen, G. Droege, Joerg Lindemann, M. Gries, T. Apel, K. Henriss, Tor Lund-Larsen, Sebastian Steibl, S. Borkar, V. De, R. V. D. Wijngaart, T. Mattson","doi":"10.1109/ISSCC.2010.5434077","DOIUrl":null,"url":null,"abstract":"Current developments in microprocessor design favor increased core counts over frequency scaling to improve processor performance and energy efficiency. Coupling this architectural trend with a message-passing protocol helps realize a data-center-on-a-die. The prototype chip (Figs. 5.7.1 and 5.7.7) described in this paper integrates 48 Pentium™ class IA-32 cores [1] on a 6×4 2D-mesh network of tiled core clusters with high-speed I/Os on the periphery. The chip contains 1.3B transistors. Each core has a private 256KB L2 cache (12MB total on-die) and is optimized to support a message-passing-programming model whereby cores communicate through shared memory. A 16KB message-passing buffer (MPB) is present in every tile, giving a total of 384KB on-die shared memory, for increased performance. Power is kept at a minimum by transmitting dynamic, fine-grained voltage-change commands over the network to an on-die voltage-regulator controller (VRC). Further power savings are achieved through active frequency scaling at the tile granularity. Memory accesses are distributed over four on-die DDR3 controllers for an aggregate peak memory bandwidth of 21GB/s at 4× burst. Additionally, an 8-byte bidirectional system interface (SIF) provides 6.4GB/s of I/O bandwidth. The die area is 567mm2 and is implemented in 45nm high-к metal-gate CMOS [2].","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"45 1","pages":"108-109"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"708","resultStr":"{\"title\":\"A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS\",\"authors\":\"J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom, Fabric Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Salihundam, V. Erraguntla, M. Konow, Michael Riepen, G. Droege, Joerg Lindemann, M. Gries, T. Apel, K. Henriss, Tor Lund-Larsen, Sebastian Steibl, S. Borkar, V. De, R. V. D. Wijngaart, T. Mattson\",\"doi\":\"10.1109/ISSCC.2010.5434077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current developments in microprocessor design favor increased core counts over frequency scaling to improve processor performance and energy efficiency. Coupling this architectural trend with a message-passing protocol helps realize a data-center-on-a-die. The prototype chip (Figs. 5.7.1 and 5.7.7) described in this paper integrates 48 Pentium™ class IA-32 cores [1] on a 6×4 2D-mesh network of tiled core clusters with high-speed I/Os on the periphery. The chip contains 1.3B transistors. Each core has a private 256KB L2 cache (12MB total on-die) and is optimized to support a message-passing-programming model whereby cores communicate through shared memory. A 16KB message-passing buffer (MPB) is present in every tile, giving a total of 384KB on-die shared memory, for increased performance. Power is kept at a minimum by transmitting dynamic, fine-grained voltage-change commands over the network to an on-die voltage-regulator controller (VRC). Further power savings are achieved through active frequency scaling at the tile granularity. Memory accesses are distributed over four on-die DDR3 controllers for an aggregate peak memory bandwidth of 21GB/s at 4× burst. Additionally, an 8-byte bidirectional system interface (SIF) provides 6.4GB/s of I/O bandwidth. The die area is 567mm2 and is implemented in 45nm high-к metal-gate CMOS [2].\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"45 1\",\"pages\":\"108-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"708\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5434077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5434077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 708

摘要

当前微处理器设计的发展倾向于增加核数而不是频率缩放,以提高处理器性能和能源效率。将这种体系结构趋势与消息传递协议相结合有助于实现数据中心。本文描述的原型芯片(图5.7.1和5.7.7)将48个Pentium™类IA-32内核[1]集成在一个6×4二维网格网络上,该网络由平铺核心集群组成,外围是高速I/ o。该芯片包含13亿个晶体管。每个内核都有一个专用的256KB二级缓存(片内总共12MB),并经过优化以支持消息传递编程模型,内核通过共享内存进行通信。每个块中都有一个16KB的消息传递缓冲区(MPB),总共提供384KB的片上共享内存,以提高性能。通过将动态的、细粒度的电压变化命令通过网络传输到片上电压调节控制器(VRC),功率保持在最低限度。进一步的节能是通过在瓷砖粒度上的主动频率缩放来实现的。内存访问分布在四个片上DDR3控制器上,在4x突发时,总峰值内存带宽为21GB/s。此外,一个8字节的双向系统接口(SIF)提供6.4GB/s的I/O带宽。该芯片面积为567mm2,采用45nm高通量金属栅CMOS[2]实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS
Current developments in microprocessor design favor increased core counts over frequency scaling to improve processor performance and energy efficiency. Coupling this architectural trend with a message-passing protocol helps realize a data-center-on-a-die. The prototype chip (Figs. 5.7.1 and 5.7.7) described in this paper integrates 48 Pentium™ class IA-32 cores [1] on a 6×4 2D-mesh network of tiled core clusters with high-speed I/Os on the periphery. The chip contains 1.3B transistors. Each core has a private 256KB L2 cache (12MB total on-die) and is optimized to support a message-passing-programming model whereby cores communicate through shared memory. A 16KB message-passing buffer (MPB) is present in every tile, giving a total of 384KB on-die shared memory, for increased performance. Power is kept at a minimum by transmitting dynamic, fine-grained voltage-change commands over the network to an on-die voltage-regulator controller (VRC). Further power savings are achieved through active frequency scaling at the tile granularity. Memory accesses are distributed over four on-die DDR3 controllers for an aggregate peak memory bandwidth of 21GB/s at 4× burst. Additionally, an 8-byte bidirectional system interface (SIF) provides 6.4GB/s of I/O bandwidth. The die area is 567mm2 and is implemented in 45nm high-к metal-gate CMOS [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An 8.5Gb/s CMOS OEIC with on-chip photodiode for short-distance optical communications A 4.5mW/Gb/s 6.4Gb/s 22+1-lane source-synchronous link rx core with optional cleanup PLL in 65nm CMOS A 76dBΩ 1.7GHz 0.18µm CMOS tunable transimpedance amplifier using broadband current pre-amplifier for high frequency lateral micromechanical oscillators A fully integrated 77GHz FMCW radar system in 65nm CMOS A timing controlled AC-DC converter for biomedical implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1