M. G. Leonov, G. Kocharyan, A. Revuzhenko, S. Lavrikov
{"title":"岩石松动的构造:地质资料和过程的物理","authors":"M. G. Leonov, G. Kocharyan, A. Revuzhenko, S. Lavrikov","doi":"10.5800/gt-2020-11-3-0488","DOIUrl":null,"url":null,"abstract":"Block-granular geological objects and rock volumetric mobility indicators are described. The mechanisms of structural and material reworking of rocks are considered in relation to the formation of a discrete tectonic structure of rocks and changes in the shapes of the geological bodies, which take place without rupturing the rock surfaces bounding these bodies and provide for the volumetric tectonic flow of solid rocks. Based on the study of natural objects and their comparison with the theoretical and experimental data on solid mechanics and geomechanics, it is suggested that one of the triggers for the volumetric disintegration of rock masses is rock fatigue damage (a fundamental phenomenon of solid-state physics). The disintegrated rocks behave according to the laws of mechanics of granular materials and mesomechanics. This study is of both theoretical and pragmatic importance as it contributes to the understanding of the regional geological features and provides new knowledge on the formation of crystalline protrusions known among the main hydrocarbon reservoirs within the basements of various geologic structures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tectonics of rock loosening: geological data and physics of the process\",\"authors\":\"M. G. Leonov, G. Kocharyan, A. Revuzhenko, S. Lavrikov\",\"doi\":\"10.5800/gt-2020-11-3-0488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block-granular geological objects and rock volumetric mobility indicators are described. The mechanisms of structural and material reworking of rocks are considered in relation to the formation of a discrete tectonic structure of rocks and changes in the shapes of the geological bodies, which take place without rupturing the rock surfaces bounding these bodies and provide for the volumetric tectonic flow of solid rocks. Based on the study of natural objects and their comparison with the theoretical and experimental data on solid mechanics and geomechanics, it is suggested that one of the triggers for the volumetric disintegration of rock masses is rock fatigue damage (a fundamental phenomenon of solid-state physics). The disintegrated rocks behave according to the laws of mechanics of granular materials and mesomechanics. This study is of both theoretical and pragmatic importance as it contributes to the understanding of the regional geological features and provides new knowledge on the formation of crystalline protrusions known among the main hydrocarbon reservoirs within the basements of various geologic structures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5800/gt-2020-11-3-0488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-3-0488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tectonics of rock loosening: geological data and physics of the process
Block-granular geological objects and rock volumetric mobility indicators are described. The mechanisms of structural and material reworking of rocks are considered in relation to the formation of a discrete tectonic structure of rocks and changes in the shapes of the geological bodies, which take place without rupturing the rock surfaces bounding these bodies and provide for the volumetric tectonic flow of solid rocks. Based on the study of natural objects and their comparison with the theoretical and experimental data on solid mechanics and geomechanics, it is suggested that one of the triggers for the volumetric disintegration of rock masses is rock fatigue damage (a fundamental phenomenon of solid-state physics). The disintegrated rocks behave according to the laws of mechanics of granular materials and mesomechanics. This study is of both theoretical and pragmatic importance as it contributes to the understanding of the regional geological features and provides new knowledge on the formation of crystalline protrusions known among the main hydrocarbon reservoirs within the basements of various geologic structures.