用DFT/TD-DFT研究2-(2′-羟基-5′-甲基苯基)-苯并三唑及其邻位取代衍生物的抗氧化和紫外吸收性能

IF 2.4 Q3 Computer Science Journal of Theoretical & Computational Chemistry Pub Date : 2021-06-03 DOI:10.4236/cc.2021.93010
Numbonui Stanley Tasheh, A. Fouegue, J. Ghogomu
{"title":"用DFT/TD-DFT研究2-(2′-羟基-5′-甲基苯基)-苯并三唑及其邻位取代衍生物的抗氧化和紫外吸收性能","authors":"Numbonui Stanley Tasheh, A. Fouegue, J. Ghogomu","doi":"10.4236/cc.2021.93010","DOIUrl":null,"url":null,"abstract":"The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The structural, electronic, antioxidant and UV absorption properties of drometrizole (PBT) and designed ortho-substituted derivatives are reported via DFT and TD-DFT in the gas and aqueous phases. DFT and TD-DFT computations were performed at the M062x-D3Zero/6-311++G(d,p)//B97-3c and PBE0-D3(BJ)/def2-TZVP levels of theory respectively. Reaction enthalpies related to hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were computed and compared with those of phenol. Results show that the presence of -NH2 substituent reduces the O-H bond dissociation enthalpy and ionization potential, while that of -CN increases the proton affinity. The HAT and SPLET mechanisms are the most plausible in the gas and aqueous phases respectively. The molecule with the -NH2 substituent (PBT1) was identified to be the compound with the highest antioxidant activity. The UV spectra of the studied compounds are characterized by two bands in the 280 - 400 nm regions. Results from this study provide a better comprehension antioxidant mechanism of drometrizole and present a new perspective for the design of electron-donor antioxidant molecules with enhanced antioxidant-photoprotective efficiencies for applications in commercial sunscreens.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of the Antioxidant and UV Absorption Properties of 2-(2’-hydroxy-5’-methylphenyl)-benzotriazole and Its Ortho-Substituted Derivatives via DFT/TD-DFT\",\"authors\":\"Numbonui Stanley Tasheh, A. Fouegue, J. Ghogomu\",\"doi\":\"10.4236/cc.2021.93010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The structural, electronic, antioxidant and UV absorption properties of drometrizole (PBT) and designed ortho-substituted derivatives are reported via DFT and TD-DFT in the gas and aqueous phases. DFT and TD-DFT computations were performed at the M062x-D3Zero/6-311++G(d,p)//B97-3c and PBE0-D3(BJ)/def2-TZVP levels of theory respectively. Reaction enthalpies related to hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were computed and compared with those of phenol. Results show that the presence of -NH2 substituent reduces the O-H bond dissociation enthalpy and ionization potential, while that of -CN increases the proton affinity. The HAT and SPLET mechanisms are the most plausible in the gas and aqueous phases respectively. The molecule with the -NH2 substituent (PBT1) was identified to be the compound with the highest antioxidant activity. The UV spectra of the studied compounds are characterized by two bands in the 280 - 400 nm regions. Results from this study provide a better comprehension antioxidant mechanism of drometrizole and present a new perspective for the design of electron-donor antioxidant molecules with enhanced antioxidant-photoprotective efficiencies for applications in commercial sunscreens.\",\"PeriodicalId\":49976,\"journal\":{\"name\":\"Journal of Theoretical & Computational Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical & Computational Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cc.2021.93010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cc.2021.93010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

近年来,由于人类急性暴露于太阳紫外线辐射,对具有紫外线过滤和抗氧化性能的化学实体的需求和追求得到了推动。采用离散傅里叶变换和td -离散傅里叶变换,研究了双甲基咪唑(PBT)及其邻取代衍生物在气相和水相中的结构、电子、抗氧化和紫外吸收性能。分别在理论水平M062x-D3Zero/6-311++G(d,p)//B97-3c和PBE0-D3(BJ)/def2-TZVP下进行DFT和TD-DFT计算。计算了氢原子转移(HAT)、单电子转移后质子转移(SET-PT)和顺序质子损失电子转移(SPLET)等反应焓,并与苯酚的反应焓进行了比较。结果表明,-NH2取代基的存在降低了O-H键的解离焓和电离势,而-CN取代基的存在提高了质子亲和力。HAT和SPLET机制分别在气相和水相中最合理。具有-NH2取代基(PBT1)的分子具有最高的抗氧化活性。所研究化合物的紫外光谱在280 ~ 400 nm范围内具有两个谱带。本研究结果为进一步了解卓硝唑的抗氧化机理提供了新的思路,并为设计具有抗氧化光防护效能的电子给体抗氧化分子提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Antioxidant and UV Absorption Properties of 2-(2’-hydroxy-5’-methylphenyl)-benzotriazole and Its Ortho-Substituted Derivatives via DFT/TD-DFT
The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The structural, electronic, antioxidant and UV absorption properties of drometrizole (PBT) and designed ortho-substituted derivatives are reported via DFT and TD-DFT in the gas and aqueous phases. DFT and TD-DFT computations were performed at the M062x-D3Zero/6-311++G(d,p)//B97-3c and PBE0-D3(BJ)/def2-TZVP levels of theory respectively. Reaction enthalpies related to hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were computed and compared with those of phenol. Results show that the presence of -NH2 substituent reduces the O-H bond dissociation enthalpy and ionization potential, while that of -CN increases the proton affinity. The HAT and SPLET mechanisms are the most plausible in the gas and aqueous phases respectively. The molecule with the -NH2 substituent (PBT1) was identified to be the compound with the highest antioxidant activity. The UV spectra of the studied compounds are characterized by two bands in the 280 - 400 nm regions. Results from this study provide a better comprehension antioxidant mechanism of drometrizole and present a new perspective for the design of electron-donor antioxidant molecules with enhanced antioxidant-photoprotective efficiencies for applications in commercial sunscreens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
期刊最新文献
A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA) Design of New Thiadiazole Derivatives with Improved Antidiabetic Activity Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models In Silico Docking of Rhodanine Derivatives and 3D-QSAR Study to Identify Potent Prostate Cancer Inhibitors Mechanism of Degradation of Rice Starch Amylopectin by Oryzenin Using ONIOM Quantum Calculations [DFT/B3LYP/6-31+G(D, P): AM1]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1