用PVTi软件、Eclipse 300和经验相关性测定最小混相压力(MMP

Vahid Karamnia, S. Ashoori
{"title":"用PVTi软件、Eclipse 300和经验相关性测定最小混相压力(MMP","authors":"Vahid Karamnia, S. Ashoori","doi":"10.22050/IJOGST.2021.252493.1567","DOIUrl":null,"url":null,"abstract":"One of the most important factors through the miscible gas injection process is to determine the Minimum Miscibility Pressure. According to the definition, the minimum miscibility pressure is the minimum pressure at which, at a constant temperature, the oil and gas injected can dissolve together to form a single phase. This pressure is typically abbreviated as MMP. Among the available methods for determining the minimum miscibility pressure, laboratory methods including slim tube test and ascending bubble apparatus test are more widely utilized. Although the mentioned tests have high measurement accuracy, they are very time consuming and expensive. Therefore, the determination of the minimum miscibility pressure is usually done using computational and simulation approaches that also have high accuracy. Conducting PVT tests and determining their MMP using slim tube method was previously performed. In this study, the minimum miscibility pressure of reservoirs was determined by applying three methods of simulation with PVTi software, simulation with Eclipse 300 software and using Empirical Correlations. By comparing the obtained results and the laboratory results, it was revealed that the simulation by Eclipse 300 is regarded as the fastest and most accurate approach.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of Minimum Miscibility Pressure (MMP) using PVTi Software, Eclipse 300 and Empirical Correlations\",\"authors\":\"Vahid Karamnia, S. Ashoori\",\"doi\":\"10.22050/IJOGST.2021.252493.1567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important factors through the miscible gas injection process is to determine the Minimum Miscibility Pressure. According to the definition, the minimum miscibility pressure is the minimum pressure at which, at a constant temperature, the oil and gas injected can dissolve together to form a single phase. This pressure is typically abbreviated as MMP. Among the available methods for determining the minimum miscibility pressure, laboratory methods including slim tube test and ascending bubble apparatus test are more widely utilized. Although the mentioned tests have high measurement accuracy, they are very time consuming and expensive. Therefore, the determination of the minimum miscibility pressure is usually done using computational and simulation approaches that also have high accuracy. Conducting PVT tests and determining their MMP using slim tube method was previously performed. In this study, the minimum miscibility pressure of reservoirs was determined by applying three methods of simulation with PVTi software, simulation with Eclipse 300 software and using Empirical Correlations. By comparing the obtained results and the laboratory results, it was revealed that the simulation by Eclipse 300 is regarded as the fastest and most accurate approach.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2021.252493.1567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2021.252493.1567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

注混气过程中最重要的因素之一是确定最小混相压力。根据定义,最小混相压力是在一定温度下注入的油气能溶解成单相的最小压力。这个压力通常缩写为MMP。在现有的测定最小混相压力的方法中,细管试验和升泡仪试验等实验室方法应用比较广泛。虽然上述测试具有较高的测量精度,但它们非常耗时和昂贵。因此,最小混相压力的确定通常采用精度较高的计算和模拟方法。采用细管法进行PVT测试并确定其MMP。本文采用PVTi软件模拟、Eclipse 300软件模拟和Empirical correlation 3种方法确定了储层最小混相压力。通过与实验结果的比较,表明Eclipse 300的模拟是最快、最准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of Minimum Miscibility Pressure (MMP) using PVTi Software, Eclipse 300 and Empirical Correlations
One of the most important factors through the miscible gas injection process is to determine the Minimum Miscibility Pressure. According to the definition, the minimum miscibility pressure is the minimum pressure at which, at a constant temperature, the oil and gas injected can dissolve together to form a single phase. This pressure is typically abbreviated as MMP. Among the available methods for determining the minimum miscibility pressure, laboratory methods including slim tube test and ascending bubble apparatus test are more widely utilized. Although the mentioned tests have high measurement accuracy, they are very time consuming and expensive. Therefore, the determination of the minimum miscibility pressure is usually done using computational and simulation approaches that also have high accuracy. Conducting PVT tests and determining their MMP using slim tube method was previously performed. In this study, the minimum miscibility pressure of reservoirs was determined by applying three methods of simulation with PVTi software, simulation with Eclipse 300 software and using Empirical Correlations. By comparing the obtained results and the laboratory results, it was revealed that the simulation by Eclipse 300 is regarded as the fastest and most accurate approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relation between asphaltene adsorption on the nanoparticles surface and asphaltene precipitation inhibition during real crude oil natural depletion tests Evaluation of a novel mechanistic approach to predict transport of water and ions through shale Investigation of origin, sedimentary environment and preservation of organic matter: A case study in Garau Formation Detection of heavy bitumen contaminations with using corrected Rock-Eval pyrolysis data Geochemical Investigation of Trace Metals in Crude Oils from Some Producing Oil Fields in Niger Delta, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1